AFLOW Prototype: A3BC2_cI48_214_f_a_e-001
This structure originally had the label A3BC2_cI48_214_f_a_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/3JDV
or
https://aflow.org/p/A3BC2_cI48_214_f_a_e-001
or
PDF Version
Prototype | Ag$_{3}$AuTe$_{2}$ |
AFLOW prototype label | A3BC2_cI48_214_f_a_e-001 |
Mineral name | petzite |
ICSD | 27539 |
Pearson symbol | cI48 |
Space group number | 214 |
Space group symbol | $I4_132$ |
AFLOW prototype command |
aflow --proto=A3BC2_cI48_214_f_a_e-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | Au I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | Au I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | Au I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (8a) | Au I |
$\mathbf{B_{5}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{7}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{8}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{9}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{10}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{11}}$ | = | $2 x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{12}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16e) | Te I |
$\mathbf{B_{13}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{14}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{15}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (24f) | Ag I |
$\mathbf{B_{16}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{17}}$ | = | $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{18}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{19}}$ | = | $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{20}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ | (24f) | Ag I |
$\mathbf{B_{21}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{22}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{23}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24f) | Ag I |
$\mathbf{B_{24}}$ | = | $x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24f) | Ag I |