Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B6C2_cI44_229_e_h_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/BC5E
or https://aflow.org/p/A3B6C2_cI44_229_e_h_c-001
or PDF Version

Ce$_{3}$Ni$_{6}$Si$_{2}$ Structure: A3B6C2_cI44_229_e_h_c-001

Picture of Structure; Click for Big Picture
Prototype Ce$_{3}$Ni$_{6}$Si$_{2}$
AFLOW prototype label A3B6C2_cI44_229_e_h_c-001
ICSD 25622
Pearson symbol cI44
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=A3B6C2_cI44_229_e_h_c-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{3}$

Other compounds with this structure

Dy$_{3}$Ni$_{6}$Si$_{2}$,  Er$_{3}$Ni$_{6}$Al$_{2}$,  Er$_{3}$Ni$_{6}$Si$_{2}$,  Eu$_{3}$Ni$_{6}$Si$_{2}$,  Gd$_{3}$Ni$_{6}$Si$_{2}$,  Ho$_{3}$Ni$_{6}$Si$_{2}$,  Lu$_{3}$Ni$_{6}$Si$_{2}$,  Nd$_{3}$Ni$_{6}$Si$_{2}$,  Pr$_{3}$Ni$_{6}$Si$_{2}$,  Sm$_{3}$Ni$_{6}$Si$_{2}$,  Tb$_{3}$Ni$_{6}$Si$_{2}$,  Tm$_{3}$Ni$_{6}$Si$_{2}$,  U$_{3}$Ni$_{6}$Ge$_{2}$,  U$_{3}$Ni$_{6}$Si$_{2}$,  Yb$_{3}$Ni$_{6}$Si$_{2}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}$ (12e) Ce I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (12e) Ce I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{y}}$ (12e) Ce I
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (12e) Ce I
$\mathbf{B_{9}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{z}}$ (12e) Ce I
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{z}}$ (12e) Ce I
$\mathbf{B_{11}}$ = $2 y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{12}}$ = $y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{13}}$ = $- y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{14}}$ = $- 2 y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{15}}$ = $y_{3} \, \mathbf{a}_{1}+2 y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{16}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{17}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{18}}$ = $- y_{3} \, \mathbf{a}_{1}- 2 y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Ni I
$\mathbf{B_{19}}$ = $y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+2 y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (24h) Ni I
$\mathbf{B_{20}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (24h) Ni I
$\mathbf{B_{21}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (24h) Ni I
$\mathbf{B_{22}}$ = $- y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- 2 y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (24h) Ni I

References

  • E. I. Hladyschewskyj, P. I. Krypiakewytsch, and O. I. Bodak, Die Kristallstruktur von Ce$_{3}$Ni$_{6}$Si$_{2}$ und verwandten Verbindungen, Z. Anorganische und Allgemeine Chemie 344, 95–101 (1966), doi:10.1002/zaac.19663440113.

Prototype Generator

aflow --proto=A3B6C2_cI44_229_e_h_c --params=$a,x_{2},y_{3}$

Species:

Running:

Output: