Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B3C_cI56_214_g_h_a-001

This structure originally had the label A3B3C_cI56_214_g_h_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/4XVN
or https://aflow.org/p/A3B3C_cI56_214_g_h_a-001
or PDF Version

Ca$_{3}$PI$_{3}$ Structure: A3B3C_cI56_214_g_h_a-001

Picture of Structure; Click for Big Picture
Prototype Ca$_{3}$I$_{3}$P
AFLOW prototype label A3B3C_cI56_214_g_h_a-001
ICSD 9026
Pearson symbol cI56
Space group number 214
Space group symbol $I4_132$
AFLOW prototype command aflow --proto=A3B3C_cI56_214_g_h_a-001
--params=$a, \allowbreak y_{2}, \allowbreak y_{3}$

Other compounds with this structure

Gd$_{3}$CCl$_{3}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) P I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) P I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) P I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (8a) P I
$\mathbf{B_{5}}$ = $\left(2 y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{7}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{8}}$ = $- \left(2 y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{9}}$ = $\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{10}}$ = $- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{11}}$ = $\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{12}}$ = $- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{13}}$ = $\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{14}}$ = $\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{15}}$ = $- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{16}}$ = $- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24g) Ca I
$\mathbf{B_{17}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{18}}$ = $- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{19}}$ = $\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{20}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{21}}$ = $\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{22}}$ = $- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{23}}$ = $\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{24}}$ = $- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{25}}$ = $- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{26}}$ = $- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{27}}$ = $\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) I I
$\mathbf{B_{28}}$ = $\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (24h) I I

References

  • C. Hamon, R. Marchand, Y. Laurent, and J. Lang, Étude d'halogénopnictures. III. Structure de Ca$_{2}$PI et Ca$_{3}$PI$_{3}$. Surstructures de type NaCl, Bull. Soc. fr. Minéral. Cristallogr. 97, 6–12 (1974), doi:10.3406/bulmi.1974.6909.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A3B3C_cI56_214_g_h_a --params=$a,y_{2},y_{3}$

Species:

Running:

Output: