AFLOW Prototype: A3B3C_cI56_214_g_h_a-001
This structure originally had the label A3B3C_cI56_214_g_h_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/4XVN
or
https://aflow.org/p/A3B3C_cI56_214_g_h_a-001
or
PDF Version
Prototype | Ca$_{3}$I$_{3}$P |
AFLOW prototype label | A3B3C_cI56_214_g_h_a-001 |
ICSD | 9026 |
Pearson symbol | cI56 |
Space group number | 214 |
Space group symbol | $I4_132$ |
AFLOW prototype command |
aflow --proto=A3B3C_cI56_214_g_h_a-001
--params=$a, \allowbreak y_{2}, \allowbreak y_{3}$ |
Gd$_{3}$CCl$_{3}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{5}}$ | = | $\left(2 y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{6}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{7}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{8}}$ | = | $- \left(2 y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{9}}$ | = | $\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{10}}$ | = | $- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{11}}$ | = | $\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{12}}$ | = | $- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{13}}$ | = | $\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{14}}$ | = | $\left(y_{2} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{15}}$ | = | $- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{16}}$ | = | $- \left(y_{2} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (24g) | Ca I |
$\mathbf{B_{17}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{18}}$ | = | $- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{19}}$ | = | $\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{20}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{21}}$ | = | $\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{22}}$ | = | $- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{23}}$ | = | $\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- \frac{1}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{24}}$ | = | $- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{25}}$ | = | $- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{26}}$ | = | $- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{8}\right) \, \mathbf{a}_{2}- \left(2 y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{27}}$ | = | $\left(y_{3} + \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\left(2 y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}a \,\mathbf{\hat{z}}$ | (24h) | I I |
$\mathbf{B_{28}}$ | = | $\left(y_{3} + \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ | (24h) | I I |