Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B10_cI52_229_e_fh-001

This structure originally had the label A3B10_cI52_229_e_fh. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/TJ2T
or https://aflow.org/p/A3B10_cI52_229_e_fh-001
or PDF Version

γ-brass (Fe$_{3}$Zn$_{10}$, $D8_{1}$) Structure: A3B10_cI52_229_e_fh-001

Picture of Structure; Click for Big Picture
Prototype Fe$_{3}$Zn$_{10}$
AFLOW prototype label A3B10_cI52_229_e_fh-001
Strukturbericht designation $D8_{1}$
Mineral name brass
ICSD none
Pearson symbol cI52
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=A3B10_cI52_229_e_fh-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{3}$

  • Adding another atom at the origin changes this to the $L2_{2}$ structure.
  • The $D8_{1}$ structure is defined in (Pearson, 1958) quoting (Schramm, 1938). More recent investigations such as (Johansson, 1968), (Brandon, 1974) and (Yu, 2005) find that $\gamma$–Fe$_{3}$Zn$_{10}$ forms in the $D8_{2}$ structure, with Fe atoms on one (8c) site, Zn atoms on the other (8e) site and the (24g) sites, and a 50-50 alloy of Fe and Zn on the other (8e) site.
  • We use Brandon's data, mapping (12g) $\rightarrow$ (12e), (24g) $\rightarrow$ (24h), and averaging the two (8e) sites to produce the (12e) coordinate here.
  • (Mizutani, 2010) classifies this as an I-cell $\gamma$-brass.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}$ (12e) Fe I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}$ (12e) Fe I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{y}}$ (12e) Fe I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{y}}$ (12e) Fe I
$\mathbf{B_{5}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{z}}$ (12e) Fe I
$\mathbf{B_{6}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{z}}$ (12e) Fe I
$\mathbf{B_{7}}$ = $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{8}}$ = $- 2 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{9}}$ = $- 2 x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{10}}$ = $- 2 x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{11}}$ = $2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{12}}$ = $- 2 x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}- 2 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{13}}$ = $2 x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{14}}$ = $2 x_{2} \, \mathbf{a}_{1}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16f) Zn I
$\mathbf{B_{15}}$ = $2 y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{16}}$ = $y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{17}}$ = $- y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{18}}$ = $- 2 y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{19}}$ = $y_{3} \, \mathbf{a}_{1}+2 y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{20}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{21}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{22}}$ = $- y_{3} \, \mathbf{a}_{1}- 2 y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24h) Zn II
$\mathbf{B_{23}}$ = $y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+2 y_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (24h) Zn II
$\mathbf{B_{24}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (24h) Zn II
$\mathbf{B_{25}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (24h) Zn II
$\mathbf{B_{26}}$ = $- y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- 2 y_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (24h) Zn II

References

  • J. Schramm, X-Ray Investigation of Phases and Phase Limits of the Zn Alloy Systems with Fe, Co and Ni, Z. Metallkd. 30, 122–130 (1938).
  • A. Johansson, H. Ljung, and S. Westman, X-Ray and Neutron Diffraction Studies on Gamma-Ni,Zn and Gamma-Fe,Zn, Acta Chem. Scand. 22, 2743–2753 (1968), doi:10.3891/acta.chem.scand.22-2743.
  • J. K. Brandon, R. Y. Brizard, P. C. Chieh, R. K. McMillan, and W. B. Pearson, New refinements of the γ-brass type structures Cu$_{5}$Zn$_{8}$, Cu$_{5}$Cd$_{8}$ and Fe$_{3}$Zn$_{10}$ 30, 1412–1417 (1974), doi:10.1107/S0567740874004997.
  • J. Yu, J. Liu, J. Zhang, and J. Wu, Electron Diffraction Study on Fe–Zn Γ intermetallic Phase of a Galvannealed IF Steel Sheet, Mater. Trans. 46, 1079–1082 (2005).
  • U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press, Boca Raton, London, New York, 2010).

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.

Prototype Generator

aflow --proto=A3B10_cI52_229_e_fh --params=$a,x_{1},x_{2},y_{3}$

Species:

Running:

Output: