
$\gamma\text{-brass}$ (Fe₃Zn₁₀, $D8_1$) Structure: A3B10_cI52_229_e_fh-001

This structure originally had the label A3B10_cI52_229_e_fh. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/TJ2T

 $https://aflow.org/p/A3B10_cI52_229_e_fh-001$

Prototype Fe_3Zn_{10}

AFLOW prototype label A3B10_cI52_229_e_fh-001

Strukturbericht designation $D8_1$

Mineral name brass

ICSD none

Pearson symbol cI52

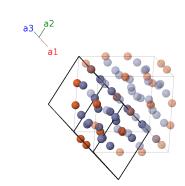
Space group number 229

Space group symbol $Im\overline{3}m$

AFLOW prototype command aflow --proto=A3B10_cI52_229_e_fh-001

--params= a, x_1, x_2, y_3

 \bullet Adding another atom at the origin changes this to the $L2_2$ structure.


- The $D8_1$ structure is defined in (Pearson, 1958) quoting (Schramm, 1938). More recent investigations such as (Johansson, 1968), (Brandon, 1974) and (Yu, 2005) find that γ -Fe₃Zn₁₀ forms in the $D8_2$ structure, with Fe atoms on one (8c) site, Zn atoms on the other (8e) site and the (24g) sites, and a 50-50 alloy of Fe and Zn on the other (8e) site.
- We use Brandon's data, mapping (12g) \rightarrow (12e), (24g) \rightarrow (24h), and averaging the two (8e) sites to produce the (12e) coordinate here.
- (Mizutani, 2010) classifies this as an "I-cell" γ -brass.

Body-centered Cubic primitive vectors

$$\mathbf{a_1} = -\frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}a\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}a\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} - \frac{1}{2}a\,\hat{\mathbf{z}}$$

Basis vectors

	Lattice coordinates		Cartesian coordinates	Wyckoff position	$\begin{array}{c} \text{Atom} \\ \text{type} \end{array}$
$B_1 = $	$x_1 \mathbf{a}_2 + x_1 \mathbf{a}_3$	=	$ax_1\mathbf{\hat{x}}$	(12e)	Fe I
$\mathbf{B_2} =$	$-x_1 \mathbf{a}_2 - x_1 \mathbf{a}_3$	=	$-ax_1\hat{\mathbf{x}}$	(12e)	Fe I
$\mathbf{B_3} =$	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_3$	=	$ax_1 \hat{\mathbf{y}}$	(12e)	Fe I
$\mathbf{B_4} =$	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_3$	=	$-ax_1\mathbf{\hat{y}}$	(12e)	Fe I
${f B_5} =$	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2$	=	$ax_1\mathbf{\hat{z}}$	(12e)	Fe I
${f B_6} =$	$-x_1\mathbf{a}_1-x_1\mathbf{a}_2$	=	$-ax_1\mathbf{\hat{z}}$	(12e)	Fe I
$\mathbf{B_7} =$	$2x_2\mathbf{a}_1 + 2x_2\mathbf{a}_2 + 2x_2\mathbf{a}_3$	=	$ax_2\hat{\mathbf{x}} + ax_2\hat{\mathbf{y}} + ax_2\hat{\mathbf{z}}$	(16f)	$\operatorname{Zn}\operatorname{I}$
$\mathbf{B_8} =$	$-2x_2\mathbf{a}_3$	=	$-ax_2\hat{\mathbf{x}} - ax_2\hat{\mathbf{y}} + ax_2\hat{\mathbf{z}}$	(16f)	$\operatorname{Zn}\operatorname{I}$
$\mathbf{B_9} =$	$-2x_2\mathbf{a}_2$	=	$-ax_2\hat{\mathbf{x}} + ax_2\hat{\mathbf{y}} - ax_2\hat{\mathbf{z}}$	(16f)	$\operatorname{Zn}\operatorname{I}$
$\mathbf{B_{10}} \ =$	$-2x_2\mathbf{a}_1$	=	$ax_2\hat{\mathbf{x}} - ax_2\hat{\mathbf{y}} - ax_2\hat{\mathbf{z}}$	(16f)	$\operatorname{Zn}\operatorname{I}$
$\mathbf{B_{11}} \ =$	$2x_2 \mathbf{a}_3$	=	$ax_2\hat{\mathbf{x}} + ax_2\hat{\mathbf{y}} - ax_2\hat{\mathbf{z}}$	(16f)	$\operatorname{Zn}\operatorname{I}$
$\mathbf{B_{12}} =$	$-2x_2\mathbf{a}_1 - 2x_2\mathbf{a}_2 - 2x_2\mathbf{a}_3$	=	$-ax_2\hat{\mathbf{x}} - ax_2\hat{\mathbf{y}} - ax_2\hat{\mathbf{z}}$	(16f)	Zn I
$\mathbf{B_{13}} =$	$2x_2 \mathbf{a}_2$	=	$ax_2\hat{\mathbf{x}} - ax_2\hat{\mathbf{y}} + ax_2\hat{\mathbf{z}}$	(16f)	Zn I
$\mathbf{B_{14}} =$	$2x_2 \mathbf{a}_1$	=	$-ax_2\hat{\mathbf{x}} + ax_2\hat{\mathbf{y}} + ax_2\hat{\mathbf{z}}$	(16f)	Zn I
$\mathbf{B_{15}} =$	$2y_3\mathbf{a}_1 + y_3\mathbf{a}_2 + y_3\mathbf{a}_3$	=	$ay_3\mathbf{\hat{y}} + ay_3\mathbf{\hat{z}}$	(24h)	Zn II
$\mathbf{B_{16}} \ =$	$y_3 \mathbf{a}_2 - y_3 \mathbf{a}_3$	=	$-ay_3\mathbf{\hat{y}}+ay_3\mathbf{\hat{z}}$	(24h)	Zn II
$\mathbf{B_{17}} \ =$	$-y_3{\bf a}_2+y_3{\bf a}_3$	=	$ay_3\mathbf{\hat{y}}-ay_3\mathbf{\hat{z}}$	(24h)	Zn II
$\mathbf{B_{18}} \;\; = \;\;$	$-2y_3\mathbf{a}_1 - y_3\mathbf{a}_2 - y_3\mathbf{a}_3$	=	$-ay_3\mathbf{\hat{y}}-ay_3\mathbf{\hat{z}}$	(24h)	Zn II
$\mathbf{B_{19}} =$	$y_3 \mathbf{a}_1 + 2y_3 \mathbf{a}_2 + y_3 \mathbf{a}_3$	=	$ay_3\mathbf{\hat{x}} + ay_3\mathbf{\hat{z}}$	(24h)	Zn II
$\mathbf{B_{20}} =$	$-y_3{\bf a}_1+y_3{\bf a}_3$	=	$ay_3\mathbf{\hat{x}} - ay_3\mathbf{\hat{z}}$	(24h)	Zn II
$\mathbf{B_{21}} =$	$y_3 \mathbf{a}_1 - y_3 \mathbf{a}_3$	=	$-ay_3\hat{\mathbf{x}} + ay_3\hat{\mathbf{z}}$	(24h)	Zn II
$\mathbf{B_{22}} =$	$-y_3\mathbf{a}_1 - 2y_3\mathbf{a}_2 - y_3\mathbf{a}_3$	=	$-ay_3\hat{\mathbf{x}}-ay_3\hat{\mathbf{z}}$	(24h)	Zn II
$\mathbf{B_{23}} =$	$y_3 \mathbf{a}_1 + y_3 \mathbf{a}_2 + 2y_3 \mathbf{a}_3$	=	$ay_3\mathbf{\hat{x}} + ay_3\mathbf{\hat{y}}$	(24h)	Zn II

$\mathbf{B_{24}} =$	$y_3 \mathbf{a}_1 - y_3 \mathbf{a}_2$	=	$-ay_3\mathbf{\hat{x}} + ay_3\mathbf{\hat{y}}$	(24h)	${\rm Zn}~{\rm II}$
$\mathbf{B_{25}} =$	$-y_3 \mathbf{a}_1 + y_3 \mathbf{a}_2$	=	$ay_3\mathbf{\hat{x}} - ay_3\mathbf{\hat{y}}$	(24h)	${\rm Zn}~{\rm II}$
$\mathbf{B_{26}} =$	$-y_3 \mathbf{a}_1 - y_3 \mathbf{a}_2 - 2y_3 \mathbf{a}_3$	=	$-ay_3\mathbf{\hat{x}}-ay_3\mathbf{\hat{y}}$	(24h)	$\operatorname{Zn}\operatorname{II}$

References

- [1] J. Schramm, X-Ray Investigation of Phases and Phase Limits of the Zn Alloy Systems with Fe, Co and Ni, Z. Metallkd. 30, 122–130 (1938).
- [2] A. Johansson, H. Ljung, and S. Westman, X-Ray and Neutron Diffraction Studies on Gamma-Ni,Zn and Gamma-Fe,Zn, Acta Chem. Scand. 22, 2743–2753 (1968), doi:10.3891/acta.chem.scand.22-2743.
- [3] J. K. Brandon, R. Y. Brizard, P. C. Chieh, R. K. McMillan, and W. B. Pearson, New refinements of the γ -brass type structures Cu_5Zn_8 , Cu_5Cd_8 and Fe_3Zn_{10} 30, 1412–1417 (1974), doi:10.1107/S0567740874004997.
- [4] J. Yu, J. Liu, J. Zhang, and J. Wu, Electron Diffraction Study on Fe–Zn Γ intermetallic Phase of a Galvannealed IF Steel Sheet, Mater. Trans. 46, 1079–1082 (2005).
- [5] U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press, Boca Raton, London, New York, 2010).

Found in

[1] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.