Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_cP12_212_c_a-001

This structure originally had the label A2B_cP12_212_c_a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/XX75
or https://aflow.org/p/A2B_cP12_212_c_a-001
or PDF Version

SrSi$_{2}$ Structure: A2B_cP12_212_c_a-001

Picture of Structure; Click for Big Picture
Prototype Si$_{2}$Sr
AFLOW prototype label A2B_cP12_212_c_a-001
ICSD 24145
Pearson symbol cP12
Space group number 212
Space group symbol $P4_332$
AFLOW prototype command aflow --proto=A2B_cP12_212_c_a-001
--params=$a, \allowbreak x_{2}$

Other compounds with this structure

BaSi$_{2}$,  BaSi$_{4}$Sr


  • This structure may also be found in the enantiomorphic space group $P4_{1}32$ #213.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{2}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{3}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{4}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (4a) Sr I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{9}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{10}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Si I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Si I

References

  • K. Janzon, H. Schäfer, and A. Weiss, Kristallstruktur von Strontiumdisilicid SrSi$_{2}$, Angew. Chem. 77, 258–259 (1965), doi:10.1002/ange.19650770605.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1985).

Prototype Generator

aflow --proto=A2B_cP12_212_c_a --params=$a,x_{2}$

Species:

Running:

Output: