AFLOW Prototype: A2BC6D_cF40_225_c_a_e_b-001
This structure originally had the label A2BC6D_cF40_225_c_a_e_b. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/83J5
or
https://aflow.org/p/A2BC6D_cF40_225_c_a_e_b-001
or
PDF Version
Prototype | Ba$_{2}$MnO$_{6}$W |
AFLOW prototype label | A2BC6D_cF40_225_c_a_e_b-001 |
Mineral name | double perovskite |
ICSD | 51613 |
Pearson symbol | cF40 |
Space group number | 225 |
Space group symbol | $Fm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A2BC6D_cF40_225_c_a_e_b-001
--params=$a, \allowbreak x_{4}$ |
Ba$_{2}$CaReO$_{6}$, Ba$_{2}$CaWO$_{6}$, Ba$_{2}$CdReO$_{6}$, Ba$_{2}$DyIrO$_{6}$, Ba$_{2}$IrNiO$_{6}$, Ba$_{2}$LiOsO$_{6}$, Ba$_{2}$MgReO$_{6}$, Ba$_{2}$NaOsO$_{6}$, Ba$_{2}$NdIrO$_{6}$, Ba$_{2}$SmIrO$_{6}$, Ba$_{2}$ZnReO$_{6}$, Bi$_{2}$FeCrO$_{6}$, Ca$_{2}$MnReO$_{6}$, Cs$_{2}$AgBBr$_{6}$, Cs$_{2}$AgBCl$_{6}$, Cs$_{2}$AgBiBr$_{6}$, Cs$_{2}$AgInBr$_{6}$, Cs$_{2}$AgInCl$_{6}$, Cs$_{2}$LiTlF$_{6}$, Cs$_{2}$NaBBr$_{6}$, Cs$_{2}$NaBCl$_{6}$, Cs$_{2}$NaBiCl$_{6}$, Cs$_{2}$NaInBr$_{6}$, Cs$_{2}$NaInCl$_{6}$, Cs$_{2}$NaLaCl$_{6}$, Cu$_{2}$TiSiO$_{6}$, K$_{2}$NaAlF$_{6}$ (elpasolite), K$_{2}$NaBiCl$_{6}$, La$_{2}$TcNiO$_{6}$, Mn$_{2}$FeSbO$_{6}$, Rb$_{2}$NaBiCl$_{6}$, Sr$_{2}$CrReO$_{6}$, Sr$_{2}$FeMoO$_{6}$, Sr$_{2}$ReMoO$_{6}$, Sr$_{2}$TiFeO$_{6}$, Sr$_{2}$YIrO$_{6}$, (La$_{0.5}$Sc$_{0.5}$)$_{2}$MnCoO$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Mn I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | W I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Ba I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8c) | Ba I |
$\mathbf{B_{5}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (24e) | O I |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (24e) | O I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{y}}$ | (24e) | O I |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{y}}$ | (24e) | O I |
$\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{z}}$ | (24e) | O I |
$\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{z}}$ | (24e) | O I |