Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC4_cF56_227_c_b_e-001

This structure originally had the label A2BC4_cF56_227_d_a_e. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/MZYE
or https://aflow.org/p/A2BC4_cF56_227_c_b_e-001
or PDF Version

Spinel (Al$_{2}$MgO$_{4}$, $H1_{1}$) Structure: A2BC4_cF56_227_c_b_e-001

Picture of Structure; Click for Big Picture
Prototype Al$_{2}$MgO$_{4}$
AFLOW prototype label A2BC4_cF56_227_c_b_e-001
Strukturbericht designation $H1_{1}$
Mineral name spinel
ICSD 26485
Pearson symbol cF56
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A2BC4_cF56_227_c_b_e-001
--params=$a, \allowbreak x_{3}$

Other compounds with this structure

Al$_{2}$CdS$_{4}$,  Al$_{2}$CrS$_{4}$,  Al$_{2}$ZnSe$_{4}$,  Cd$_{2}$VS$_{4}$,  Co$_{2}$NiS$_{4}$,  Co$_{3}$Se$_{4}$,  Cr$_{2}$CdTe$_{4}$,  Cr$_{2}$CoS$_{4}$,  Cr$_{2}$CuS$_{4}$,  Cr$_{2}$CuSe$_{4}$,  Cr$_{2}$CoO$_{4}$,  Cr$_{2}$FeO$_{4}$,  Cr$_{2}$FeS$_{4}$,  Cr$_{2}$HgS$_{4}$,  Cr$_{2}$MnS$_{4}$,  Cr$_{2}$SeZn$_{4}$,  Cr$_{2}$ZrCd$_{4}$,  Cr$_{2}$ZrSe$_{4}$,  Ga$_{2}$CoS$_{4}$,  Fe$_{2}$NiO$_{4}$,  In$_{2}$CaS$_{4}$,  In$_{2}$CdSe$_{4}$,  In$_{2}$CrS$_{4}$,  In$_{2}$FeS$_{4}$,  In$_{2}$HgS$_{4}$,  In$_{2}$MgS$_{4}$,  In$_{2}$MnS$_{4}$,  In$_{2}$NiS$_{4}$,  In$_{2}$ZrCd$_{4}$,  Lu$_{2}$FeS$_{4}$,  Lu$_{2}$MgS$_{4}$,  Lu$_{2}$MnS$_{4}$,  Mg$_{2}$GeO$_{4}$,  Mn$_{2}$ZnTe$_{4}$,  Ni$_{2}$FeS$_{4}$,  Sc$_{2}$FeS$_{4}$,  Sc$_{2}$MnS$_{4}$,  Ti$_{2}$CuS$_{4}$,  V$_{2}$CuS$_{4}$,  V$_{2}$ZnO$_{4}$,  Yb$_{2}$FeS$_{4}$,  Yb$_{2}$MnS$_{4}$,  Co$_{3}$O$_{4}$,  Co$_{3}$S$_{4}$,  Fe$_{3}$O$_{4}$,  Fe$_{3}$S$_{4}$ (greigite),  Ni$_{3}$S$_{4}$


  • An inverse spinel has four Al atoms on the (8a) sites and (Al,Mg) alloyed on the (16d) sites.
  • The binary $D7_{2}$ and ternary $H1_{1}$ spinel structures are for all intents and purposes identical. We could use $D7_{2}$ for the binary spinels and $H1_{1}$ for the ternaries, but historically this has not been the case. We dual-list this structure only to keep the historical record intact.
  • (Hahn, 1955) has an extensive list of ternary spinels and inverse spinels.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (8b) Mg I
$\mathbf{B_{2}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (8b) Mg I
$\mathbf{B_{3}}$ = $0$ = $0$ (16c) Al I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (16c) Al I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{10}}$ = $- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I
$\mathbf{B_{14}}$ = $\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) O I

References

  • P. Fischer, Neutronenbeugungsuntersuchung der Strukturen von MgAl$_{2}$O$_{4}$-und ZnAl$_{2}$O$_{4}$-Spinellen, in Abhängigkeit von der Vorgeschichte, Z. Krystallogr. 124, 275–302 (1967), doi:10.1524/zkri.1967.124.16.275.
  • H. Hahn, G. Frank, W. Klingler, A. D. Störger, and G. Störger, Chalkogenide. VI. Über Ternäre Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber, Z. Anorganische und Allgemeine Chemie 279, 241–270 (1955), doi:10.1002/zaac.19552790502.

Found in

  • R. J. Hill, J. R. Craig, and G. V. Gibbs, Systematics of the Spinel Structure Type, Phys. Chem. Miner. 4, 317–339 (1979).

Prototype Generator

aflow --proto=A2BC4_cF56_227_c_b_e --params=$a,x_{3}$

Species:

Running:

Output: