AFLOW Prototype: A2BC4_cF56_227_c_b_e-001
This structure originally had the label A2BC4_cF56_227_d_a_e. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/MZYE
or
https://aflow.org/p/A2BC4_cF56_227_c_b_e-001
or
PDF Version
Prototype | Al$_{2}$MgO$_{4}$ |
AFLOW prototype label | A2BC4_cF56_227_c_b_e-001 |
Strukturbericht designation | $H1_{1}$ |
Mineral name | spinel |
ICSD | 26485 |
Pearson symbol | cF56 |
Space group number | 227 |
Space group symbol | $Fd\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A2BC4_cF56_227_c_b_e-001
--params=$a, \allowbreak x_{3}$ |
Al$_{2}$CdS$_{4}$, Al$_{2}$CrS$_{4}$, Al$_{2}$ZnSe$_{4}$, Cd$_{2}$VS$_{4}$, Co$_{2}$NiS$_{4}$, Co$_{3}$Se$_{4}$, Cr$_{2}$CdTe$_{4}$, Cr$_{2}$CoS$_{4}$, Cr$_{2}$CuS$_{4}$, Cr$_{2}$CuSe$_{4}$, Cr$_{2}$CoO$_{4}$, Cr$_{2}$FeO$_{4}$, Cr$_{2}$FeS$_{4}$, Cr$_{2}$HgS$_{4}$, Cr$_{2}$MnS$_{4}$, Cr$_{2}$SeZn$_{4}$, Cr$_{2}$ZrCd$_{4}$, Cr$_{2}$ZrSe$_{4}$, Ga$_{2}$CoS$_{4}$, Fe$_{2}$NiO$_{4}$, In$_{2}$CaS$_{4}$, In$_{2}$CdSe$_{4}$, In$_{2}$CrS$_{4}$, In$_{2}$FeS$_{4}$, In$_{2}$HgS$_{4}$, In$_{2}$MgS$_{4}$, In$_{2}$MnS$_{4}$, In$_{2}$NiS$_{4}$, In$_{2}$ZrCd$_{4}$, Lu$_{2}$FeS$_{4}$, Lu$_{2}$MgS$_{4}$, Lu$_{2}$MnS$_{4}$, Mg$_{2}$GeO$_{4}$, Mn$_{2}$ZnTe$_{4}$, Ni$_{2}$FeS$_{4}$, Sc$_{2}$FeS$_{4}$, Sc$_{2}$MnS$_{4}$, Ti$_{2}$CuS$_{4}$, V$_{2}$CuS$_{4}$, V$_{2}$ZnO$_{4}$, Yb$_{2}$FeS$_{4}$, Yb$_{2}$MnS$_{4}$, Co$_{3}$O$_{4}$, Co$_{3}$S$_{4}$, Fe$_{3}$O$_{4}$, Fe$_{3}$S$_{4}$ (greigite), Ni$_{3}$S$_{4}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ | (8b) | Mg I |
$\mathbf{B_{2}}$ | = | $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ | = | $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ | (8b) | Mg I |
$\mathbf{B_{3}}$ | = | $0$ | = | $0$ | (16c) | Al I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (16c) | Al I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16c) | Al I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (16c) | Al I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{10}}$ | = | $- \left(3 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{11}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{12}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{13}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | O I |
$\mathbf{B_{14}}$ | = | $\left(3 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32e) | O I |