Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B5_cF392_216_4efg_4ef4h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/V17U
or https://aflow.org/p/A2B5_cF392_216_4efg_4ef4h-001
or PDF Version

Pt$_{3}$Zn$_{10}$ Structure: A2B5_cF392_216_4efg_4ef4h-001

Picture of Structure; Click for Big Picture
Prototype Pt$_{3}$Zn$_{10}$
AFLOW prototype label A2B5_cF392_216_4efg_4ef4h-001
ICSD 105854
Pearson symbol cF392
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A2B5_cF392_216_4efg_4ef4h-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak x_{9}, \allowbreak x_{10}, \allowbreak x_{11}, \allowbreak x_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak z_{15}$

  • The site occupation in this structure is rather complicated:
    • In any unit cell, only one of the Pt-II/Zn-II sites is occupied.
    • The site we have labeled Pt-II is actually 50% platinum and 50% zinc.
    • The sites we have labeled Zn-II and Zn-V are 8.333% platinum and 91.667% zinc.
    • The Pt-V and Pt-VI sites are 2/3 platinum and 1/3 zinc.
  • Accounting for all of this the nominal composition of the structure is approximately Pt$_{3}$Zn$_{10}$.
  • This is an example of an F-cell $\gamma$-brass. (Mizutani, 2010)
  • (Johansson, 1970) give the Wyckoff positions of the (24h) sites as $x y y$. The standard representation, used by AFLOW, is $x x y$, so we have swapped their $x$ and $y$ coordinates for these sites.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16e) Pt I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- 3 x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16e) Pt I
$\mathbf{B_{3}}$ = $x_{1} \, \mathbf{a}_{1}- 3 x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16e) Pt I
$\mathbf{B_{4}}$ = $- 3 x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16e) Pt I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Pt II
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- 3 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Pt II
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}- 3 x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Pt II
$\mathbf{B_{8}}$ = $- 3 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Pt II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Pt III
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Pt III
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Pt III
$\mathbf{B_{12}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Pt III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Pt IV
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Pt IV
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Pt IV
$\mathbf{B_{16}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Pt IV
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{18}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{19}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{20}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) Zn I
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{22}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{23}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{24}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{25}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Zn III
$\mathbf{B_{26}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- 3 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (16e) Zn III
$\mathbf{B_{27}}$ = $x_{7} \, \mathbf{a}_{1}- 3 x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Zn III
$\mathbf{B_{28}}$ = $- 3 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (16e) Zn III
$\mathbf{B_{29}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn IV
$\mathbf{B_{30}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- 3 x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn IV
$\mathbf{B_{31}}$ = $x_{8} \, \mathbf{a}_{1}- 3 x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn IV
$\mathbf{B_{32}}$ = $- 3 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (16e) Zn IV
$\mathbf{B_{33}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}$ (24f) Pt V
$\mathbf{B_{34}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}$ (24f) Pt V
$\mathbf{B_{35}}$ = $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{y}}$ (24f) Pt V
$\mathbf{B_{36}}$ = $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{y}}$ (24f) Pt V
$\mathbf{B_{37}}$ = $x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{z}}$ (24f) Pt V
$\mathbf{B_{38}}$ = $- x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{z}}$ (24f) Pt V
$\mathbf{B_{39}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}$ (24f) Zn V
$\mathbf{B_{40}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}$ (24f) Zn V
$\mathbf{B_{41}}$ = $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{y}}$ (24f) Zn V
$\mathbf{B_{42}}$ = $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{y}}$ (24f) Zn V
$\mathbf{B_{43}}$ = $x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{z}}$ (24f) Zn V
$\mathbf{B_{44}}$ = $- x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{z}}$ (24f) Zn V
$\mathbf{B_{45}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pt VI
$\mathbf{B_{46}}$ = $x_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pt VI
$\mathbf{B_{47}}$ = $x_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pt VI
$\mathbf{B_{48}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) Pt VI
$\mathbf{B_{49}}$ = $x_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24g) Pt VI
$\mathbf{B_{50}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) Pt VI
$\mathbf{B_{51}}$ = $z_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{52}}$ = $z_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{53}}$ = $\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{54}}$ = $- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{55}}$ = $\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{56}}$ = $- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{57}}$ = $z_{12} \, \mathbf{a}_{1}+\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{58}}$ = $z_{12} \, \mathbf{a}_{1}- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{59}}$ = $z_{12} \, \mathbf{a}_{1}+\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{60}}$ = $z_{12} \, \mathbf{a}_{1}- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{61}}$ = $- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{62}}$ = $\left(2 x_{12} - z_{12}\right) \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}- \left(2 x_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (48h) Zn VI
$\mathbf{B_{63}}$ = $z_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{64}}$ = $z_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{65}}$ = $\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{66}}$ = $- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{67}}$ = $\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{68}}$ = $- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{69}}$ = $z_{13} \, \mathbf{a}_{1}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{70}}$ = $z_{13} \, \mathbf{a}_{1}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{71}}$ = $z_{13} \, \mathbf{a}_{1}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{72}}$ = $z_{13} \, \mathbf{a}_{1}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{73}}$ = $- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{74}}$ = $\left(2 x_{13} - z_{13}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- \left(2 x_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (48h) Zn VII
$\mathbf{B_{75}}$ = $z_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{76}}$ = $z_{14} \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{77}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{78}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{79}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{80}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{81}}$ = $z_{14} \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{82}}$ = $z_{14} \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{83}}$ = $z_{14} \, \mathbf{a}_{1}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{84}}$ = $z_{14} \, \mathbf{a}_{1}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{85}}$ = $- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}+\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{86}}$ = $\left(2 x_{14} - z_{14}\right) \, \mathbf{a}_{1}+z_{14} \, \mathbf{a}_{2}- \left(2 x_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (48h) Zn VIII
$\mathbf{B_{87}}$ = $z_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+a z_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{88}}$ = $z_{15} \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+a z_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{89}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- a z_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{90}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- a z_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{91}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a z_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{92}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a z_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{93}}$ = $z_{15} \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a z_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{94}}$ = $z_{15} \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $- a z_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{95}}$ = $z_{15} \, \mathbf{a}_{1}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a z_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{96}}$ = $z_{15} \, \mathbf{a}_{1}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a z_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{97}}$ = $- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}+\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a z_{15} \,\mathbf{\hat{y}}- a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX
$\mathbf{B_{98}}$ = $\left(2 x_{15} - z_{15}\right) \, \mathbf{a}_{1}+z_{15} \, \mathbf{a}_{2}- \left(2 x_{15} + z_{15}\right) \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a z_{15} \,\mathbf{\hat{y}}+a x_{15} \,\mathbf{\hat{z}}$ (48h) Zn IX

References

  • A. Johansson and S. Westman, Determination of the Structure of Cubic Gamma-Pt,Zn; a Phase of Gamma Brass Type with an 18Å Superstructure, Acta Chem. Scand. 24, 3471–3479 (1970), doi:10.3891/acta.chem.scand.24-3471.

Found in

  • U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press, Boca Raton, London, New York, 2010).

Prototype Generator

aflow --proto=A2B5_cF392_216_4efg_4ef4h --params=$a,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},x_{9},x_{10},x_{11},x_{12},z_{12},x_{13},z_{13},x_{14},z_{14},x_{15},z_{15}$

Species:

Running:

Output: