Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_cP20_213_c_d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/KXT1
or https://aflow.org/p/A2B3_cP20_213_c_d-001
or PDF Version

Co$_{8}$Zn$_{9}$Mn$_{3}$ Structure: A2B3_cP20_213_c_d-001

Picture of Structure; Click for Big Picture
Prototype Co$_{8}$Mn$_{3}$Zn$_{9}$
AFLOW prototype label A2B3_cP20_213_c_d-001
ICSD 19272
Pearson symbol cP20
Space group number 213
Space group symbol $P4_132$
AFLOW prototype command aflow --proto=A2B3_cP20_213_c_d-001
--params=$a, \allowbreak x_{1}, \allowbreak y_{2}$

  • The composition of the site we label Co (8c) is actually Co$_{7.616}$Mn$_{0.834}$, and the site labeled Zn (12d) is Zn$_{8.7756}$Co$_{0.684}$Mn$_{2.448}$. (Bocarsly, 2019)
  • Many other compositions are observed.
  • We use the synchrotron data taken by (Bocarsly, 2019) at 100K.
  • This structure can also be found in the enantiomorphic space group $P4_{3}32$ #212.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{5}}$ = $\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{6}}$ = $- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{7}}$ = $\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{8}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Co I
$\mathbf{B_{9}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{10}}$ = $\frac{3}{8} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{11}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{12}}$ = $\frac{5}{8} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{13}}$ = $\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{14}}$ = $\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{15}}$ = $- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{16}}$ = $- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{17}}$ = $y_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{18}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{19}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (12d) Zn I
$\mathbf{B_{20}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (12d) Zn I

References

  • J. D. Bocarsly, C. Heikes, C. M. Brown, S. D. Wilson, and R. Seshadri, Deciphering structural and magnetic disorder in the chiral skyrmion host materials Co$_{x}$Zn$_{y}$Mn$_{z}$ ($x+y+z=20$), Phys. Rev. Materials 3, 014402 (2019), doi:10.1103/PhysRevMaterials.3.014402.

Prototype Generator

aflow --proto=A2B3_cP20_213_c_d --params=$a,x_{1},y_{2}$

Species:

Running:

Output: