Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3C2_cI28_199_a_b_a-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/VYHG
or https://aflow.org/p/A2B3C2_cI28_199_a_b_a-002
or PDF Version

Corderoite (α-Hg$_{3}$S$_{2}$Cl$_{2}$) Structure: A2B3C2_cI28_199_a_b_a-002

Picture of Structure; Click for Big Picture
Prototype Cl$_{2}$Hg$_{3}$S$_{2}$
AFLOW prototype label A2B3C2_cI28_199_a_b_a-002
Mineral name corderoite
ICSD 27399
Pearson symbol cI28
Space group number 199
Space group symbol $I2_13$
AFLOW prototype command aflow --proto=A2B3C2_cI28_199_a_b_a-002
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}$

Other compounds with this structure

Hg$_{3}$S$_{2}$F$_{2}$,  Hg$_{3}$S$_{2}$I$_{2}$,  Hg$_{3}$Se$_{2}$F$_{2}$,  Hg$_{3}$Se$_{2}$Cl$_{2}$,  Hg$_{3}$Te$_{2}$Br$_{2}$,  Hg$_{3}$Te$_{2}$Cl$_{2}$,  K$_{2}$Pb$_{2}$O$_{3}$,  K$_{2}$Sn$_{2}$O$_{3}$,  Pd$_{3}$S$_{2}$Bi$_{2}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+2 x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (8a) Cl I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (8a) Cl I
$\mathbf{B_{3}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (8a) Cl I
$\mathbf{B_{4}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8a) Cl I
$\mathbf{B_{5}}$ = $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8a) S I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8a) S I
$\mathbf{B_{7}}$ = $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8a) S I
$\mathbf{B_{8}}$ = $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8a) S I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12b) Hg I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (12b) Hg I
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (12b) Hg I
$\mathbf{B_{12}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12b) Hg I
$\mathbf{B_{13}}$ = $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (12b) Hg I
$\mathbf{B_{14}}$ = $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (12b) Hg I

References

  • H. Puff and J. Küster, Quecksilberchalkogenid-halogenide, Naturwissenschaften 49, 299 (1962), doi:10.1007/BF00622707.
  • E. H. Carlson, The growth of HgS and Hg$_{3}$S$_{2}$Cl$_{2}$ single crystals by a vapor phase method 1, 271–277 (1967), doi:10.1016/0022-0248(67)90033-4.

Found in

  • E. H. Carlson, The growth of HgS and Hg$_{3}$S$_{2}$Cl$_{2}$ single crystals by a vapor phase method, J. Cryst. Growth 1, 271–277 (1967), doi:10.1016/0022-0248(67)90033-4.

Prototype Generator

aflow --proto=A2B3C2_cI28_199_a_b_a --params=$a,x_{1},x_{2},x_{3}$

Species:

Running:

Output: