AFLOW Prototype: A2B11_cP39_200_f_begik-001
This structure originally had the label A2B11_cP39_200_f_aghij. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/8FHP
or
https://aflow.org/p/A2B11_cP39_200_f_begik-001
or
PDF Version
Prototype | Mg$_{2}$Zn$_{11}$ |
AFLOW prototype label | A2B11_cP39_200_f_begik-001 |
Strukturbericht designation | $D8_{c}$ |
ICSD | 104898 |
Pearson symbol | cP39 |
Space group number | 200 |
Space group symbol | $Pm\overline{3}$ |
AFLOW prototype command |
aflow --proto=A2B11_cP39_200_f_begik-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{6}, \allowbreak z_{6}$ |
Na$_{2}$Cd$_{11}$, Mg$_{2}$Cu$_{6}$Al$_{5}$, Mg$_{2}$Cu$_{6}$Ga$_{5}$, Na$_{2}$Au$_{6}$In$_{5}$, Sc$_{2}$Co$_{7}$Ga$_{4}$, K$_{6}$Na$_{14}$CdTl$_{18}$, K$_{6}$Na$_{14}$HgTl$_{18}$, K$_{6}$Na$_{14}$MgTl$_{18}$, K$_{6}$Na$_{14}$ZnTl$_{18}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (1b) | Zn I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (6e) | Zn II |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (6e) | Zn II |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{y}}$ | (6e) | Zn II |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{y}}$ | (6e) | Zn II |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{z}}$ | (6e) | Zn II |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{z}}$ | (6e) | Zn II |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Mg I |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Mg I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (6f) | Mg I |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (6f) | Mg I |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (6f) | Mg I |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (6f) | Mg I |
$\mathbf{B_{14}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (6g) | Zn III |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (6g) | Zn III |
$\mathbf{B_{16}}$ | = | $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6g) | Zn III |
$\mathbf{B_{17}}$ | = | $- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6g) | Zn III |
$\mathbf{B_{18}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{z}}$ | (6g) | Zn III |
$\mathbf{B_{19}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{z}}$ | (6g) | Zn III |
$\mathbf{B_{20}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{21}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{22}}$ | = | $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{23}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{24}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{25}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{26}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{27}}$ | = | $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (8i) | Zn IV |
$\mathbf{B_{28}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{29}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{30}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{31}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{32}}$ | = | $z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{33}}$ | = | $z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{34}}$ | = | $- z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $- a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{35}}$ | = | $- z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $- a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{36}}$ | = | $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{37}}$ | = | $- y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{38}}$ | = | $y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12k) | Zn V |
$\mathbf{B_{39}}$ | = | $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12k) | Zn V |