Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B11_cP39_200_f_begik-001

This structure originally had the label A2B11_cP39_200_f_aghij. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/8FHP
or https://aflow.org/p/A2B11_cP39_200_f_begik-001
or PDF Version

Mg$_{2}$Zn$_{11}$ ($D8_{c}$) Structure: A2B11_cP39_200_f_begik-001

Picture of Structure; Click for Big Picture
Prototype Mg$_{2}$Zn$_{11}$
AFLOW prototype label A2B11_cP39_200_f_begik-001
Strukturbericht designation $D8_{c}$
ICSD 104898
Pearson symbol cP39
Space group number 200
Space group symbol $Pm\overline{3}$
AFLOW prototype command aflow --proto=A2B11_cP39_200_f_begik-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{6}, \allowbreak z_{6}$

Other compounds with this structure

Na$_{2}$Cd$_{11}$,  Mg$_{2}$Cu$_{6}$Al$_{5}$,  Mg$_{2}$Cu$_{6}$Ga$_{5}$,  Na$_{2}$Au$_{6}$In$_{5}$,  Sc$_{2}$Co$_{7}$Ga$_{4}$,  K$_{6}$Na$_{14}$CdTl$_{18}$,  K$_{6}$Na$_{14}$HgTl$_{18}$,  K$_{6}$Na$_{14}$MgTl$_{18}$,  K$_{6}$Na$_{14}$ZnTl$_{18}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (1b) Zn I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}$ (6e) Zn II
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (6e) Zn II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{y}}$ (6e) Zn II
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (6e) Zn II
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{z}}$ (6e) Zn II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{z}}$ (6e) Zn II
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (6f) Mg I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (6f) Mg I
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (6f) Mg I
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6g) Zn III
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (6g) Zn III
$\mathbf{B_{16}}$ = $x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Zn III
$\mathbf{B_{17}}$ = $- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Zn III
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{z}}$ (6g) Zn III
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{z}}$ (6g) Zn III
$\mathbf{B_{20}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{21}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{22}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{23}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{24}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{25}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{26}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{27}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Zn IV
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{29}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{30}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{31}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{32}}$ = $z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{33}}$ = $z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{34}}$ = $- z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{35}}$ = $- z_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{36}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{37}}$ = $- y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{38}}$ = $y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12k) Zn V
$\mathbf{B_{39}}$ = $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12k) Zn V

References


Prototype Generator

aflow --proto=A2B11_cP39_200_f_begik --params=$a,x_{2},x_{3},x_{4},x_{5},y_{6},z_{6}$

Species:

Running:

Output: