Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A23B2C6_cP31_200_cij_ab_f-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/L1EN
or https://aflow.org/p/A23B2C6_cP31_200_cij_ab_f-001
or PDF Version

C-AlRuNi (Al$_{20}$Ni$_{3}$Ru$_{5}$) Structure: A23B2C6_cP31_200_cij_ab_f-001

Picture of Structure; Click for Big Picture
Prototype Al$_{20}$Ni$_{3}$Ru$_{5}$
AFLOW prototype label A23B2C6_cP31_200_cij_ab_f-001
ICSD 230569
Pearson symbol cP31
Space group number 200
Space group symbol $Pm\overline{3}$
AFLOW prototype command aflow --proto=A23B2C6_cP31_200_cij_ab_f-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{6}, \allowbreak z_{6}$

  • Most of these sites are partially or contained a mixture of species. We label them by the majority species:
    • Ni-I (1a) is 79% nickel and 21% ruthenium,
    • Ni-II (1b) is 100% nickel,
    • Al-I (3c) is 77% aluminum and 23% vacancies,
    • Ru-I (6g) is 81.4% ruthenium and 18.6% nickel,
    • Al-II (8i) is 74% aluminum and 26% vacancies, and
    • Al-III (12k) is 100% aluminum.
  • This gives an actual composition of Al$_{20.23}$Ni$_{2.906}$Ru$_{5.094}$, which we simplify to Al$_{20}$Ni$_{3}$Ru$_{5}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ni I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (1b) Ni II
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Al I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Al I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (3c) Al I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Ru I
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Ru I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (6f) Ru I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (6f) Ru I
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (6f) Ru I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (6f) Ru I
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{13}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{16}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{18}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8i) Al II
$\mathbf{B_{20}}$ = $y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{21}}$ = $- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{22}}$ = $y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{23}}$ = $- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{24}}$ = $z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{25}}$ = $z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{26}}$ = $- z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{27}}$ = $- z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{z}}$ (12j) Al III
$\mathbf{B_{28}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}$ (12j) Al III
$\mathbf{B_{29}}$ = $- y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ = $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}$ (12j) Al III
$\mathbf{B_{30}}$ = $y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ = $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}$ (12j) Al III
$\mathbf{B_{31}}$ = $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}$ (12j) Al III

References

  • R. Simura, K. Sugiyama, S. Suzuki, and T. Kawamata, Crystal Structure of the C-AlRuNi Phase, Mater. Trans. 58, 1101–1105 (2017), doi:10.2320/matertrans.M2017106.

Prototype Generator

aflow --proto=A23B2C6_cP31_200_cij_ab_f --params=$a,x_{4},x_{5},y_{6},z_{6}$

Species:

Running:

Output: