Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A18B_cF76_225_c2f_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7K0D
or https://aflow.org/p/A18B_cF76_225_c2f_a-001
or PDF Version

High Temperature Cu$_{2}$Se Structure: A18B_cF76_225_c2f_a-001

Picture of Structure; Click for Big Picture
Prototype Cu$_{2}$Se
AFLOW prototype label A18B_cF76_225_c2f_a-001
ICSD none
Pearson symbol cF76
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A18B_cF76_225_c2f_a-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

Ag$_{2}$Te (HT),  Cu$_{1.8}$S


  • Cu$_{2}$Se exists in two forms:
  • The data for the rhombohedral phase was taken at room temperature, while the high temperature structure was examined at 415K.
  • All of the copper sites in the high temperature phase are partially occupied, with the copper atoms averaging to the positions of the fluorite ($C1$) structure.
  • The Cu-I (8c) site has 31% occupancy; the Cu-II (32f) site has 14% occupancy; and the Cu-III (32f) site has 3% occupancy.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Se I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Cu I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) Cu I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{7}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+3 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}+3 x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{11}}$ = $3 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{15}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+3 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{17}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{18}}$ = $- x_{4} \, \mathbf{a}_{1}+3 x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III
$\mathbf{B_{19}}$ = $3 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (32f) Cu III

References

  • L. Gulay, M. Daszkiewicz, O. Strok, and A. Pietraszko, Crystal structure of Cu$_{2}$Se, Chem. Met. Alloys 4, 200–205 (2011), doi:10.30970/cma4.0184.

Prototype Generator

aflow --proto=A18B_cF76_225_c2f_a --params=$a,x_{3},x_{4}$

Species:

Running:

Output: