AFLOW Prototype: A17B15_cP64_221_acfm_eij-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/RWLL
or
https://aflow.org/p/A17B15_cP64_221_acfm_eij-001
or
PDF Version
Prototype | Pd$_{17}$Se$_{15}$ |
AFLOW prototype label | A17B15_cP64_221_acfm_eij-001 |
Mineral name | palladseite |
ICSD | 23907 |
Pearson symbol | cP64 |
Space group number | 221 |
Space group symbol | $Pm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A17B15_cP64_221_acfm_eij-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak z_{7}$ |
Rh$_{17}$S$_{15}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Pd I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (3c) | Pd II |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (3c) | Pd II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (3c) | Pd II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (6e) | Se I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (6e) | Se I |
$\mathbf{B_{7}}$ | = | $x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{y}}$ | (6e) | Se I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{y}}$ | (6e) | Se I |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{z}}$ | (6e) | Se I |
$\mathbf{B_{10}}$ | = | $- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{z}}$ | (6e) | Se I |
$\mathbf{B_{11}}$ | = | $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd III |
$\mathbf{B_{12}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd III |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd III |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd III |
$\mathbf{B_{15}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (6f) | Pd III |
$\mathbf{B_{16}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (6f) | Pd III |
$\mathbf{B_{17}}$ | = | $y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{18}}$ | = | $- y_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{19}}$ | = | $y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{20}}$ | = | $- y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{21}}$ | = | $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{22}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ | = | $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{23}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{24}}$ | = | $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ | (12i) | Se II |
$\mathbf{B_{25}}$ | = | $y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ | = | $a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ | (12i) | Se II |
$\mathbf{B_{26}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}$ | = | $- a y_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}$ | (12i) | Se II |
$\mathbf{B_{27}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ | = | $a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ | (12i) | Se II |
$\mathbf{B_{28}}$ | = | $- y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ | = | $- a y_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}$ | (12i) | Se II |
$\mathbf{B_{29}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{30}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{31}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{32}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{33}}$ | = | $y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{34}}$ | = | $y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{35}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{36}}$ | = | $- y_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{37}}$ | = | $y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{38}}$ | = | $- y_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{39}}$ | = | $y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a y_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{40}}$ | = | $- y_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a y_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12j) | Se III |
$\mathbf{B_{41}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{42}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{43}}$ | = | $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{44}}$ | = | $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{45}}$ | = | $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{46}}$ | = | $z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{47}}$ | = | $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{48}}$ | = | $- z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{49}}$ | = | $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{50}}$ | = | $- x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{51}}$ | = | $x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{52}}$ | = | $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{53}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{54}}$ | = | $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{55}}$ | = | $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{56}}$ | = | $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{57}}$ | = | $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{58}}$ | = | $- x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{59}}$ | = | $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{60}}$ | = | $x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{61}}$ | = | $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{62}}$ | = | $z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{63}}$ | = | $- z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |
$\mathbf{B_{64}}$ | = | $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ | (24m) | Pd IV |