Palladseite (Pd₁₇Se₁₅) Structure: A17B15_cP64_221_acfm_eij-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/RWLL

https://aflow.org/p/A17B15_cP64_221_acfm_eij-001

Prototype $Pd_{17}Se_{15}$

AFLOW prototype label A17B15_cP64_221_acfm_eij-001

Mineral name palladseite

ICSD 23907
Pearson symbol cP64
Space group number 221

Space group symbol $Pm\overline{3}m$

AFLOW prototype command aflow --proto=A17B15_cP64_221_acfm_eij-001

--params= $a, x_3, x_4, y_5, y_6, x_7, z_7$

Other compounds with this structure

 $Rh_{17}S_{15}$

• (Geller, 1962) determined that $Pd_{17}Se_{15}$ could be in space group $Pm\overline{3}m$ #221 (this structure), $P\overline{4}3m$ #215, or P432 #207, and finds that $Pm\overline{3}m$ gives the best fit to single-crystal X-ray diffraction pattern, even though the fit of the parameters for the all of the Wyckoff sites could not be converged. We therefore present all three structure possibilities.

• We shifted the coordinates of (Geller, 1962) to move the Pd-I atom from the center of the cubic cell, Wyckoff position (1b), to the origin, Wyckoff position (1a).

Simple Cubic primitive vectors

 $\mathbf{B_{27}} =$

 $y_5 \, \mathbf{a}_1 - y_5 \, \mathbf{a}_2$

Basis ve	ctors	1				
		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	0	=	0	(1a)	Pd I
${f B_2}$	=	$rac{1}{2}\mathbf{a}_2+rac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{y}} + \frac{1}{2}a\hat{\mathbf{z}}$	(3c)	Pd II
B_3	=	$rac{1}{2}\mathbf{a}_1+rac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{z}}$	(3c)	Pd II
${f B_4}$	=	$rac{1}{2}\mathbf{a}_1+rac{1}{2}\mathbf{a}_2$	=	$rac{1}{2}a\mathbf{\hat{x}} + rac{1}{2}a\mathbf{\hat{y}}$	(3c)	Pd II
B_5	=	$x_3 \mathbf{a}_1$	=	$ax_3 \mathbf{\hat{x}}$	(6e)	Se I
${f B_6}$	=	$-x_3 \mathbf{a}_1$	=	$-ax_3\mathbf{\hat{x}}$	(6e)	Se I
$\mathbf{B_7}$	=	$x_3 \mathbf{a}_2$	=	$ax_3\mathbf{\hat{y}}$	(6e)	Se I
B_8	=	$-x_3 {\bf a}_2$	=	$-ax_3\mathbf{\hat{y}}$	(6e)	Se I
${f B_9}$	=	$x_3 \mathbf{a}_3$	=	$ax_3\mathbf{\hat{z}}$	(6e)	Se I
${ m B_{10}}$	=	$-x_3 \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{z}}$	(6e)	Se I
B_{11}	=	$x_4 \mathbf{a}_1 + \frac{1}{2} \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(6f)	Pd III
$\mathbf{B_{12}}$	=	$-x_4\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(6f)	Pd III
B_{13}	=	$\frac{1}{2}\mathbf{a}_1 + x_4\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + ax_4\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(6f)	Pd III
B_{14}	=	$\frac{1}{2}\mathbf{a}_1 - x_4\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - ax_4\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(6f)	Pd III
B_{15}	=	$\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + x_4\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + ax_4\mathbf{\hat{z}}$	(6f)	Pd III
B_{16}	=	$\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 - x_4\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} - ax_4\mathbf{\hat{z}}$	(6f)	Pd III
B_{17}	=	$y_5\mathbf{a}_2+y_5\mathbf{a}_3$	=	$ay_5\mathbf{\hat{y}} + ay_5\mathbf{\hat{z}}$	(12i)	Se II
B_{18}	=	$-y_5{f a}_2+y_5{f a}_3$	=	$-ay_5\mathbf{\hat{y}}+ay_5\mathbf{\hat{z}}$	(12i)	Se II
B_{19}	=	$y_5 \mathbf{a}_2 - y_5 \mathbf{a}_3$	=	$ay_5\mathbf{\hat{y}}-ay_5\mathbf{\hat{z}}$	(12i)	Se II
${f B_{20}}$	=	$-y_5 \mathbf{a}_2 - y_5 \mathbf{a}_3$	=	$-ay_5\mathbf{\hat{y}}-ay_5\mathbf{\hat{z}}$	(12i)	Se II
${f B_{21}}$	=	$y_5 \mathbf{a}_1 + y_5 \mathbf{a}_3$	=	$ay_5\mathbf{\hat{x}} + ay_5\mathbf{\hat{z}}$	(12i)	Se II
$\mathbf{B_{22}}$	=	$y_5 \mathbf{a}_1 - y_5 \mathbf{a}_3$	=	$ay_5\mathbf{\hat{x}} - ay_5\mathbf{\hat{z}}$	(12i)	Se II
${ m B_{23}}$	=	$-y_5{f a}_1+y_5{f a}_3$	=	$-ay_5\mathbf{\hat{x}} + ay_5\mathbf{\hat{z}}$	(12i)	Se II
${f B_{24}}$	=	$-y_5 \mathbf{a}_1 - y_5 \mathbf{a}_3$	=	$-ay_5\mathbf{\hat{x}}-ay_5\mathbf{\hat{z}}$	(12i)	Se II
${ m B_{25}}$	=	$y_5\mathbf{a}_1+y_5\mathbf{a}_2$	=	$ay_5\mathbf{\hat{x}} + ay_5\mathbf{\hat{y}}$	(12i)	Se II
$\mathbf{B_{26}}$	=	$-y_5{f a}_1+y_5{f a}_2$	=	$-ay_5\mathbf{\hat{x}} + ay_5\mathbf{\hat{y}}$	(12i)	Se II

 $ay_5\,\mathbf{\hat{x}} - ay_5\,\mathbf{\hat{y}}$

(12i)

 $\mathrm{Se}\ \mathrm{II}$

$\mathbf{B_{28}} =$	$-y_5 \mathbf{a}_1 - y_5 \mathbf{a}_2$	=	$-ay_5\hat{\mathbf{x}}-ay_5\hat{\mathbf{y}}$	(12i)	Se II
$\mathbf{B_{29}} =$	$\frac{1}{2}\mathbf{a}_1 + y_6\mathbf{a}_2 + y_6\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + ay_6\hat{\mathbf{y}} + ay_6\hat{\mathbf{z}}$	(12j)	Se III
$\mathbf{B_{30}} =$	$\frac{1}{2}\mathbf{a}_1 - y_6\mathbf{a}_2 + y_6\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - ay_6\hat{\mathbf{y}} + ay_6\hat{\mathbf{z}}$	(12j)	Se III
$\mathbf{B_{31}} =$	$\frac{1}{2}\mathbf{a}_1 + y_6\mathbf{a}_2 - y_6\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + ay_6\hat{\mathbf{y}} - ay_6\hat{\mathbf{z}}$	(12j)	Se III
$\mathbf{B_{32}} =$	$\frac{1}{2}\mathbf{a}_1 - y_6\mathbf{a}_2 - y_6\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - ay_6\hat{\mathbf{y}} - ay_6\hat{\mathbf{z}}$	(12j)	Se III
$\mathbf{B_{33}} =$	$y_6 \mathbf{a}_1 + \frac{1}{2} \mathbf{a}_2 + y_6 \mathbf{a}_3$	=	$ay_6\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} + ay_6\hat{\mathbf{z}}$	(12j)	Se III
$\mathbf{B_{34}} =$	$y_6 \mathbf{a}_1 + \frac{1}{2} \mathbf{a}_2 - y_6 \mathbf{a}_3$	=	$ay_6\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} - ay_6\hat{\mathbf{z}}$	(12j)	Se III
$\mathbf{B_{35}} =$	$-y_6\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + y_6\mathbf{a}_3$	=	$-ay_6\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + ay_6\mathbf{\hat{z}}$	(12j)	Se III
${ m B_{36}}~=$	$-y_6\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 - y_6\mathbf{a}_3$	=	$-ay_6\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} - ay_6\mathbf{\hat{z}}$	(12j)	Se III
$\mathbf{B_{37}} =$	$y_6 \mathbf{a}_1 + y_6 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ay_6\mathbf{\hat{x}} + ay_6\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(12j)	Se III
$\mathbf{B_{38}} =$	$-y_6\mathbf{a}_1 + y_6\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ay_6\mathbf{\hat{x}} + ay_6\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(12j)	Se III
$\mathbf{B_{39}} =$	$y_6 \mathbf{a}_1 - y_6 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ay_6\mathbf{\hat{x}} - ay_6\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(12j)	Se III
$\mathbf{B_{40}} =$	$-y_6\mathbf{a}_1 - y_6\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ay_6\mathbf{\hat{x}} - ay_6\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(12j)	Se III
$\mathbf{B_{41}} \;\; = \;\;$	$x_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 + z_7 \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} + ax_7\mathbf{\hat{y}} + az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{42}} \;\; = \;\;$	$-x_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 + z_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}} - ax_7\mathbf{\hat{y}} + az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{43}} =$	$-x_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 - z_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}} + ax_7\mathbf{\hat{y}} - az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{44}} =$	$x_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 - z_7 \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} - ax_7\mathbf{\hat{y}} - az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathrm{B_{45}}~=$	$z_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$az_7 \hat{\mathbf{x}} + ax_7 \hat{\mathbf{y}} + ax_7 \hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{46}} =$	$z_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$az_7 \hat{\mathbf{x}} - ax_7 \hat{\mathbf{y}} - ax_7 \hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{47}} =$	$-z_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$-az_7\hat{\mathbf{x}} - ax_7\hat{\mathbf{y}} + ax_7\hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{48}} =$	$-z_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$-az_7\hat{\mathbf{x}} + ax_7\hat{\mathbf{y}} - ax_7\hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{49}} =$	$x_7 \mathbf{a}_1 + z_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$ax_7\hat{\mathbf{x}} + az_7\hat{\mathbf{y}} + ax_7\hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{50}} \;\; = \;\;$	$-x_7 \mathbf{a}_1 + z_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}} + az_7\mathbf{\hat{y}} - ax_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{51}} \;\; = \;\;$	$x_7 \mathbf{a}_1 - z_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} - az_7\mathbf{\hat{y}} - ax_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{52}} \;\; = \;\;$	$-x_7 \mathbf{a}_1 - z_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}} - az_7\mathbf{\hat{y}} + ax_7\mathbf{\hat{z}}$	(24m)	Pd IV
${f B_{53}} =$	$x_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 - z_7 \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} + ax_7\mathbf{\hat{y}} - az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{54}} =$	$-x_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 - z_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}}-ax_7\mathbf{\hat{y}}-az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{55}} =$	$x_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 + z_7 \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} - ax_7\mathbf{\hat{y}} + az_7\mathbf{\hat{z}}$	(24m)	Pd IV
${f B_{56}}~=$	$-x_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 + z_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}} + ax_7\mathbf{\hat{y}} + az_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{57}} \ =$	$x_7 \mathbf{a}_1 + z_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} + az_7\mathbf{\hat{y}} - ax_7\mathbf{\hat{z}}$	(24m)	Pd IV
${f B_{58}}~=$	$-x_7 \mathbf{a}_1 + z_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$-ax_7\hat{\mathbf{x}} + az_7\hat{\mathbf{y}} + ax_7\hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{59}} \;\; = \;\;$	$-x_7 \mathbf{a}_1 - z_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}}-az_7\mathbf{\hat{y}}-ax_7\mathbf{\hat{z}}$	(24m)	Pd IV
$\mathbf{B_{60}}~=~$	$x_7 \mathbf{a}_1 - z_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$ax_7\hat{\mathbf{x}} - az_7\hat{\mathbf{y}} + ax_7\hat{\mathbf{z}}$	(24m)	Pd IV
$B_{61} \ =$	$z_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$az_7 \hat{\mathbf{x}} + ax_7 \hat{\mathbf{y}} - ax_7 \hat{\mathbf{z}}$	(24m)	Pd IV
$\mathbf{B_{62}} \ =$	$z_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$az_7 \hat{\mathbf{x}} - ax_7 \hat{\mathbf{y}} + ax_7 \hat{\mathbf{z}}$	(24m)	Pd IV
$\rm B_{63} \ =$	$-z_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 + x_7 \mathbf{a}_3$	=	$-az_7\hat{\mathbf{x}} + ax_7\hat{\mathbf{y}} + ax_7\hat{\mathbf{z}}$	(24m)	Pd IV
$ m B_{64} =$	$-z_7 \mathbf{a}_1 - x_7 \mathbf{a}_2 - x_7 \mathbf{a}_3$	=	$-az_7\hat{\mathbf{x}}-ax_7\hat{\mathbf{y}}-ax_7\hat{\mathbf{z}}$	(24m)	Pd IV

References

 $[1] \ \ S. \ \ Geller, \ \textit{The Crystal Structure of Pd}_{17}Se_{15}, \ Acta \ Cryst. \ \textbf{15}, \ 713-721 \ (1962), \ doi:10.1107/S0365110X62001929.$

Found in

 $[1]\,$ D. Barthelmy, $Mineralogy\ Database\ (2012).$ Palladseite Mineral Data.