Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A17B15_cP64_215_acg2i_f2i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/55EV
or https://aflow.org/p/A17B15_cP64_215_acg2i_f2i-001
or PDF Version

Palladseite (Pd$_{17}$Se$_{15}$) Structure: A17B15_cP64_215_acg2i_f2i-001

Picture of Structure; Click for Big Picture
Prototype Pd$_{17}$Se$_{15}$
AFLOW prototype label A17B15_cP64_215_acg2i_f2i-001
Mineral name palladseite
ICSD none
Pearson symbol cP64
Space group number 215
Space group symbol $P\overline{4}3m$
AFLOW prototype command aflow --proto=A17B15_cP64_215_acg2i_f2i-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}$

Other compounds with this structure

Rh$_{17}$S$_{15}$


  • (Geller, 1962) determined that Pd$_{17}$Se$_{15}$ could be in space group $Pm\overline{3}m$ #221, $P\overline{4}3m$ #215 (this structure), or $P432$ #207, and finds that $Pm\overline{3}m$ gives the best fit to single-crystal X-ray diffraction pattern, even though the fit of the parameters for the all of the Wyckoff sites could not be converged. We therefore present all three structure possibilities.
  • We shifted the coordinates of (Geller, 1962) to move the Pd-I atom from the center of the cubic cell, Wyckoff position (1b), to the origin, Wyckoff position (1a).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Pd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Pd II
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (3c) Pd II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (3c) Pd II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}$ = $a x_{3} \,\mathbf{\hat{x}}$ (6f) Se I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (6f) Se I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{y}}$ (6f) Se I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{y}}$ (6f) Se I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{z}}$ (6f) Se I
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{z}}$ (6f) Se I
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Pd III
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Pd III
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Pd III
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Pd III
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (6g) Pd III
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (6g) Pd III
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{20}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{21}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{22}}$ = $z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{23}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{24}}$ = $- z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{25}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{26}}$ = $- x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{27}}$ = $x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{28}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12i) Pd IV
$\mathbf{B_{29}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{30}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{31}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{32}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{33}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{34}}$ = $z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{35}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{36}}$ = $- z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{37}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{38}}$ = $- x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{39}}$ = $x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{40}}$ = $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (12i) Pd V
$\mathbf{B_{41}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{42}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{43}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{44}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{45}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{46}}$ = $z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{47}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{48}}$ = $- z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{49}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{50}}$ = $- x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{51}}$ = $x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{52}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Se II
$\mathbf{B_{53}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{54}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{55}}$ = $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{56}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{57}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{58}}$ = $z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{59}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{60}}$ = $- z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{61}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{62}}$ = $- x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{63}}$ = $x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III
$\mathbf{B_{64}}$ = $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Se III

References


Prototype Generator

aflow --proto=A17B15_cP64_215_acg2i_f2i --params=$a,x_{3},x_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8}$

Species:

Running:

Output: