Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A13B3C8D12_cP72_223_ak_c_i_k-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/KF6U
or https://aflow.org/p/A13B3C8D12_cP72_223_ak_c_i_k-001
or PDF Version

β-Ba$_{8}$Ga$_{16}$Sn$_{30}$ Clathrate Structure: A13B3C8D12_cP72_223_ak_c_i_k-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{4}$Ga$_{8}$Sn$_{15}$
AFLOW prototype label A13B3C8D12_cP72_223_ak_c_i_k-001
ICSD none
Pearson symbol cP72
Space group number 223
Space group symbol $Pm\overline{3}n$
AFLOW prototype command aflow --proto=A13B3C8D12_cP72_223_ak_c_i_k-001
--params=$a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}$

Other compounds with this structure

Ba$_{8}$Ga$_{16}$Ge$_{30}$


  • There is a considerable amount of disorder in this system:
    • The (2a) site is pure barium and labeled Ba.
    • The (6c) site is pure gallium and labeled Ga.
    • The (16i) site is 64.4% tin and 35.6% gallium. We label this as germanium, Ge, as that is another possible component of this compound and to avoid confusion with the other gallium and tin sites.
    • The first (24k) site is 25% barium, with the remainder of the sites vacant. This can be seen as four-lobed atom clusters in the figure, when it is expanded beyond one unit cell. We label this site as barium, Ba.
    • The final (24k) site is 74.8% tin and 25.2% gallium. We label this as tin, Sn.
  • (Aliva, 2006) found another clathrate structure with this stoichiometry, $\alpha$–Ba$_{8}$Ga$_{16}$Sn$_{30}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ba I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) Ba I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Ga I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Ga I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6c) Ga I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6c) Ga I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) Ga I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) Ga I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{12}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{13}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{14}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{15}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{16}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{17}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{18}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{19}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{20}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{21}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{22}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{23}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{24}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16i) Ge I
$\mathbf{B_{25}}$ = $y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{26}}$ = $- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{27}}$ = $y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{28}}$ = $- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{29}}$ = $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{30}}$ = $z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{31}}$ = $- z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{32}}$ = $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{33}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24k) Ba II
$\mathbf{B_{34}}$ = $- y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24k) Ba II
$\mathbf{B_{35}}$ = $y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24k) Ba II
$\mathbf{B_{36}}$ = $- y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24k) Ba II
$\mathbf{B_{37}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{38}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{39}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{40}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{41}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{42}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{43}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{44}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{45}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{46}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{47}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{48}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Ba II
$\mathbf{B_{49}}$ = $y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{50}}$ = $- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{51}}$ = $y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{52}}$ = $- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{53}}$ = $z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{54}}$ = $z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{55}}$ = $- z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{56}}$ = $- z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{57}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (24k) Sn I
$\mathbf{B_{58}}$ = $- y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (24k) Sn I
$\mathbf{B_{59}}$ = $y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (24k) Sn I
$\mathbf{B_{60}}$ = $- y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (24k) Sn I
$\mathbf{B_{61}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{62}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{63}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{64}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{65}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{66}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{67}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{68}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{69}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{70}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{71}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn I
$\mathbf{B_{72}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn I

References

  • M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Ba$_{8}$Ga$_{16}$Sn$_{30}$ with type-I clathrate structure: Drastic suppression of heat conduction, Appl. Phys. Lett. 92, 041901 (2007), doi:10.1063/1.2831926.
  • M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Glasslike versus crystalline thermal conductivity in carrier-tuned Ba$_{8}$Ga$_{16}$X$_{30}$ clathrates (X=Ge,Sn), Phys. Rev. B 74, 125109 (2006), doi:10.1103/PhysRevB.74.125109.

Prototype Generator

aflow --proto=A13B3C8D12_cP72_223_ak_c_i_k --params=$a,x_{3},y_{4},z_{4},y_{5},z_{5}$

Species:

Running:

Output: