AFLOW Prototype: A12B_cI26_204_g_a-001
This structure originally had the label A12B_cI26_204_g_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/JDL2
or
https://aflow.org/p/A12B_cI26_204_g_a-001
or
PDF Version
Prototype | Al$_{12}$W |
AFLOW prototype label | A12B_cI26_204_g_a-001 |
ICSD | 58207 |
Pearson symbol | cI26 |
Space group number | 204 |
Space group symbol | $Im\overline{3}$ |
AFLOW prototype command |
aflow --proto=A12B_cI26_204_g_a-001
--params=$a, \allowbreak y_{2}, \allowbreak z_{2}$ |
Al$_{12}$Mo, Al$_{12}$Mn, Al$_{12}$Re, Al$_{12}$Te
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | W I |
$\mathbf{B_{2}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{3}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{4}}$ | = | $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{5}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{6}}$ | = | $y_{2} \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{7}}$ | = | $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{8}}$ | = | $y_{2} \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{9}}$ | = | $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ | (24g) | Al I |
$\mathbf{B_{10}}$ | = | $z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ | (24g) | Al I |
$\mathbf{B_{11}}$ | = | $z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ | (24g) | Al I |
$\mathbf{B_{12}}$ | = | $- z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ | (24g) | Al I |
$\mathbf{B_{13}}$ | = | $- z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ | (24g) | Al I |