Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B_cI26_204_g_a-001

This structure originally had the label A12B_cI26_204_g_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/JDL2
or https://aflow.org/p/A12B_cI26_204_g_a-001
or PDF Version

Al$_{12}$W Structure: A12B_cI26_204_g_a-001

Picture of Structure; Click for Big Picture
Prototype Al$_{12}$W
AFLOW prototype label A12B_cI26_204_g_a-001
ICSD 58207
Pearson symbol cI26
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=A12B_cI26_204_g_a-001
--params=$a, \allowbreak y_{2}, \allowbreak z_{2}$

Other compounds with this structure

Al$_{12}$Mo,  Al$_{12}$Mn,  Al$_{12}$Re,  Al$_{12}$Te


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) W I
$\mathbf{B_{2}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{3}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{4}}$ = $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{5}}$ = $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{6}}$ = $y_{2} \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{7}}$ = $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{8}}$ = $y_{2} \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{9}}$ = $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ (24g) Al I
$\mathbf{B_{10}}$ = $z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ (24g) Al I
$\mathbf{B_{11}}$ = $z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ (24g) Al I
$\mathbf{B_{12}}$ = $- z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ (24g) Al I
$\mathbf{B_{13}}$ = $- z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ (24g) Al I

References

  • J. Adam and J. B. Rich, The crystal structure of WAl$_{12}$, MoAl$_{12}$ and (Mn, Cr)Al$_{12}$, Acta Cryst. 7, 813–816 (1954), doi:10.1107/S0365110X54002514.

Prototype Generator

aflow --proto=A12B_cI26_204_g_a --params=$a,y_{2},z_{2}$

Species:

Running:

Output: