Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A12B_cF52_225_h_b-001

This structure originally had the label A12B_cF52_225_i_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/JTKK
or https://aflow.org/p/A12B_cF52_225_h_b-001
or PDF Version

UB$_{12}$ ($D2_{f}$) Structure: A12B_cF52_225_h_b-001

Picture of Structure; Click for Big Picture
Prototype B$_{12}$U
AFLOW prototype label A12B_cF52_225_h_b-001
Strukturbericht designation $D2_{f}$
ICSD 24705
Pearson symbol cF52
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A12B_cF52_225_h_b-001
--params=$a, \allowbreak y_{2}$

Other compounds with this structure

DyB$_{12}$,  ErB$_{12}$,  LuB$_{12}$,  ThB$_{12}$,  TmB$_{12}$,  YB$_{12}$,  YbB$_{12}$,  ZrB$_{12}$,  (Th$_{0.93}$Zr$_{0.07}$)B$_{12}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) U I
$\mathbf{B_{2}}$ = $2 y_{2} \, \mathbf{a}_{1}$ = $a y_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{3}}$ = $2 y_{2} \, \mathbf{a}_{2}- 2 y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{4}}$ = $- 2 y_{2} \, \mathbf{a}_{2}+2 y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{5}}$ = $- 2 y_{2} \, \mathbf{a}_{1}$ = $- a y_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{6}}$ = $2 y_{2} \, \mathbf{a}_{2}$ = $a y_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{7}}$ = $- 2 y_{2} \, \mathbf{a}_{1}+2 y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{8}}$ = $2 y_{2} \, \mathbf{a}_{1}- 2 y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{9}}$ = $- 2 y_{2} \, \mathbf{a}_{2}$ = $- a y_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ (48h) B I
$\mathbf{B_{10}}$ = $2 y_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ (48h) B I
$\mathbf{B_{11}}$ = $2 y_{2} \, \mathbf{a}_{1}- 2 y_{2} \, \mathbf{a}_{2}$ = $- a y_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}$ (48h) B I
$\mathbf{B_{12}}$ = $- 2 y_{2} \, \mathbf{a}_{1}+2 y_{2} \, \mathbf{a}_{2}$ = $a y_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ (48h) B I
$\mathbf{B_{13}}$ = $- 2 y_{2} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}$ (48h) B I

References

  • P. Blum and F. Bertaut, Contribution à l'Étude des Borures à Teneur Élevée en Bore, Acta Cryst. 7, 81–86 (1954), doi:10.1107/S0365110X54000151.

Found in

  • W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley Interscience, New York, London, Sydney, Tornoto, 1972).

Prototype Generator

aflow --proto=A12B_cF52_225_h_b --params=$a,y_{2}$

Species:

Running:

Output: