
AFLOW Prototype: AB_oP8_58_g_g
Prototype | : | InS |
AFLOW prototype label | : | AB_oP8_58_g_g |
Strukturbericht designation | : | None |
Pearson symbol | : | oP8 |
Space group number | : | 58 |
Space group symbol | : | $Pnnm$ |
AFLOW prototype command | : | aflow --proto=AB_oP8_58_g_g --params=$a$,$b/a$,$c/a$,$x_{1}$,$y_{1}$,$x_{2}$,$y_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} + y_{1}b \, \mathbf{\hat{y}} & \left(4g\right) & \text{In} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} & = & -x_{1}a \, \mathbf{\hat{x}}-y_{1}b \, \mathbf{\hat{y}} & \left(4g\right) & \text{In} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{1}\right)b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \text{In} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{1}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{1}\right)b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \text{In} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}b \, \mathbf{\hat{y}} & \left(4g\right) & \text{S} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}b \, \mathbf{\hat{y}} & \left(4g\right) & \text{S} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \text{S} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4g\right) & \text{S} \\ \end{array} \]