
AFLOW Prototype: AB_oI48_44_6d_ab2cde
Prototype | : | MgZn |
AFLOW prototype label | : | AB_oI48_44_6d_ab2cde |
Strukturbericht designation | : | $B30$ |
Pearson symbol | : | oI48 |
Space group number | : | 44 |
Space group symbol | : | $Imm2$ |
AFLOW prototype command | : | aflow --proto=AB_oI48_44_6d_ab2cde --params=$a$,$b/a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$y_{5}$,$z_{5}$,$y_{6}$,$z_{6}$,$y_{7}$,$z_{7}$,$y_{8}$,$z_{8}$,$y_{9}$,$z_{9}$,$y_{10}$,$z_{10}$,$y_{11}$,$z_{11}$,$x_{12}$,$y_{12}$,$z_{12}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & z_{1} \, \mathbf{a}_{1} + z_{1} \, \mathbf{a}_{2} & = & z_{1}c \, \mathbf{\hat{z}} & \left(2a\right) & \text{Zn I} \\ \mathbf{B}_{2} & = & \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{1} + z_{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2b\right) & \text{Zn II} \\ \mathbf{B}_{3} & = & z_{3} \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + z_{3}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Zn III} \\ \mathbf{B}_{4} & = & z_{3} \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + z_{3}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Zn III} \\ \mathbf{B}_{5} & = & z_{4} \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Zn IV} \\ \mathbf{B}_{6} & = & z_{4} \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + z_{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Zn IV} \\ \mathbf{B}_{7} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + y_{5} \, \mathbf{a}_{3} & = & y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg I} \\ \mathbf{B}_{8} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2}-y_{5} \, \mathbf{a}_{3} & = & -y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg I} \\ \mathbf{B}_{9} & = & \left(y_{6}+z_{6}\right) \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + y_{6} \, \mathbf{a}_{3} & = & y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg II} \\ \mathbf{B}_{10} & = & \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2}-y_{6} \, \mathbf{a}_{3} & = & -y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg II} \\ \mathbf{B}_{11} & = & \left(y_{7}+z_{7}\right) \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2} + y_{7} \, \mathbf{a}_{3} & = & y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg III} \\ \mathbf{B}_{12} & = & \left(-y_{7}+z_{7}\right) \, \mathbf{a}_{1} + z_{7} \, \mathbf{a}_{2}-y_{7} \, \mathbf{a}_{3} & = & -y_{7}b \, \mathbf{\hat{y}} + z_{7}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg III} \\ \mathbf{B}_{13} & = & \left(y_{8}+z_{8}\right) \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2} + y_{8} \, \mathbf{a}_{3} & = & y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg IV} \\ \mathbf{B}_{14} & = & \left(-y_{8}+z_{8}\right) \, \mathbf{a}_{1} + z_{8} \, \mathbf{a}_{2}-y_{8} \, \mathbf{a}_{3} & = & -y_{8}b \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg IV} \\ \mathbf{B}_{15} & = & \left(y_{9}+z_{9}\right) \, \mathbf{a}_{1} + z_{9} \, \mathbf{a}_{2} + y_{9} \, \mathbf{a}_{3} & = & y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg V} \\ \mathbf{B}_{16} & = & \left(-y_{9}+z_{9}\right) \, \mathbf{a}_{1} + z_{9} \, \mathbf{a}_{2}-y_{9} \, \mathbf{a}_{3} & = & -y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg V} \\ \mathbf{B}_{17} & = & \left(y_{10}+z_{10}\right) \, \mathbf{a}_{1} + z_{10} \, \mathbf{a}_{2} + y_{10} \, \mathbf{a}_{3} & = & y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg VI} \\ \mathbf{B}_{18} & = & \left(-y_{10}+z_{10}\right) \, \mathbf{a}_{1} + z_{10} \, \mathbf{a}_{2}-y_{10} \, \mathbf{a}_{3} & = & -y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Mg VI} \\ \mathbf{B}_{19} & = & \left(y_{11}+z_{11}\right) \, \mathbf{a}_{1} + z_{11} \, \mathbf{a}_{2} + y_{11} \, \mathbf{a}_{3} & = & y_{11}b \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Zn V} \\ \mathbf{B}_{20} & = & \left(-y_{11}+z_{11}\right) \, \mathbf{a}_{1} + z_{11} \, \mathbf{a}_{2}-y_{11} \, \mathbf{a}_{3} & = & -y_{11}b \, \mathbf{\hat{y}} + z_{11}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{Zn V} \\ \mathbf{B}_{21} & = & \left(y_{12}+z_{12}\right) \, \mathbf{a}_{1} + \left(x_{12}+z_{12}\right) \, \mathbf{a}_{2} + \left(x_{12}+y_{12}\right) \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Zn VI} \\ \mathbf{B}_{22} & = & \left(-y_{12}+z_{12}\right) \, \mathbf{a}_{1} + \left(-x_{12}+z_{12}\right) \, \mathbf{a}_{2} + \left(-x_{12}-y_{12}\right) \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Zn VI} \\ \mathbf{B}_{23} & = & \left(-y_{12}+z_{12}\right) \, \mathbf{a}_{1} + \left(x_{12}+z_{12}\right) \, \mathbf{a}_{2} + \left(x_{12}-y_{12}\right) \, \mathbf{a}_{3} & = & x_{12}a \, \mathbf{\hat{x}}-y_{12}b \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Zn VI} \\ \mathbf{B}_{24} & = & \left(y_{12}+z_{12}\right) \, \mathbf{a}_{1} + \left(-x_{12}+z_{12}\right) \, \mathbf{a}_{2} + \left(-x_{12}+y_{12}\right) \, \mathbf{a}_{3} & = & -x_{12}a \, \mathbf{\hat{x}} + y_{12}b \, \mathbf{\hat{y}} + z_{12}c \, \mathbf{\hat{z}} & \left(8e\right) & \text{Zn VI} \\ \end{array} \]