Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_hP12_194_df_ce

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Covellite (CuS, $B18$) Structure: AB_hP12_194_df_ce

Picture of Structure; Click for Big Picture
Prototype : CuS
AFLOW prototype label : AB_hP12_194_df_ce
Strukturbericht designation : $B18$
Pearson symbol : hP12
Space group number : 194
Space group symbol : $\text{P6}_{3}\text{/mmc}$
AFLOW prototype command : aflow --proto=AB_hP12_194_df_ce
--params=
$a$,$c/a$,$z_{3}$,$z_{4}$


Other compounds with this structure

  • CuSe

Hexagonal primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac{\sqrt3}2 \, a \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \, \mathbf{\hat{z}}\\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(2c\right) & \text{S I} \\ \mathbf{B}_{2}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac34 \, c \, \mathbf{\hat{z}}& \left(2c\right) & \text{S I} \\ \mathbf{B}_{3}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac34 \, c \, \mathbf{\hat{z}}& \left(2d\right) & \text{Cu I} \\ \mathbf{B}_{4}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(2d\right) & \text{Cu I} \\ \mathbf{B}_{5}& = &z_{3} \, \mathbf{a}_{3}& = &z_{3} \, c \, \mathbf{\hat{z}}& \left(4e\right) & \text{S II} \\ \mathbf{B}_{6}& = &- z_{3} \, \mathbf{a}_{3}& = &- z_{3} \, c \, \mathbf{\hat{z}}& \left(4e\right) & \text{S II} \\ \mathbf{B}_{7}& = &\left(\frac12 + z_{3}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(4e\right) & \text{S II} \\ \mathbf{B}_{8}& = &\left(\frac12 - z_{3}\right) \, \mathbf{a}_{3}& = &\left(\frac12 - z_{3}\right) \, c \, \mathbf{\hat{z}}& \left(4e\right) & \text{S II} \\ \mathbf{B}_{9}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ z_{4} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+\frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ z_{4} \, c \, \mathbf{\hat{z}}& \left(4f\right) & \text{Cu II} \\ \mathbf{B}_{10}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}+ \left(\frac12 + z_{4}\right) \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \left(\frac12 + z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(4f\right) & \text{Cu II} \\ \mathbf{B}_{11}& = &\frac23 \, \mathbf{a}_{1}+ \frac13 \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}- z_{4} \, c \, \mathbf{\hat{z}}& \left(4f\right) & \text{Cu II} \\ \mathbf{B}_{12}& = &\frac13 \, \mathbf{a}_{1}+ \frac23 \, \mathbf{a}_{2}+ \left(\frac12 - z_{4}\right) \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}}+ \left(\frac12 - z_{4}\right) \, c \, \mathbf{\hat{z}}& \left(4f\right) & \text{Cu II} \\ \end{array} \]

References

  • M. Ohmasa, M. Suzuki, and Y. Takéuchi, A refinement of the crystal structure of covellite, CuS, Mineralogical Journal 8, 311–319 (1977), doi:10.2465/minerj.8.311.

Geometry files


Prototype Generator

aflow --proto=AB_hP12_194_df_ce --params=

Species:

Running:

Output: