
AFLOW Prototype: ABC6_hR8_166_a_b_h
Prototype | : | KNO3 |
AFLOW prototype label | : | ABC6_hR8_166_a_b_h |
Strukturbericht designation | : | None |
Pearson symbol | : | hR8 |
Space group number | : | 166 |
Space group symbol | : | $R\bar{3}m$ |
AFLOW prototype command | : | aflow --proto=ABC6_hR8_166_a_b_h --params=$a$,$c/a$,$x_{3}$,$z_{3}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \text{K} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(1b\right) & \text{N} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(6h\right) & \text{O} \\ \mathbf{B}_{4} & = & z_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(6h\right) & \text{O} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{\sqrt{3}}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(6h\right) & \text{O} \\ \mathbf{B}_{6} & = & -z_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{y}}-\left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(6h\right) & \text{O} \\ \mathbf{B}_{7} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{y}}-\left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(6h\right) & \text{O} \\ \mathbf{B}_{8} & = & -x_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \frac{1}{\sqrt{3}}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{y}}-\left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(6h\right) & \text{O} \\ \end{array} \]