
AFLOW Prototype: ABC3_mP10_11_e_e_ef
Prototype | : | KClO3 |
AFLOW prototype label | : | ABC3_mP10_11_e_e_ef |
Strukturbericht designation | : | $G0_{6}$ |
Pearson symbol | : | mP10 |
Space group number | : | 11 |
Space group symbol | : | $\text{P2}_{1}\text{/m}$ |
AFLOW prototype command | : | aflow --proto=ABC3_mP10_11_e_e_ef --params=$a$,$b/a$,$c/a$,$\beta$,$x_{1}$,$z_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & =& x_{1} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3}& =& \left(x_{1} \, a + z_{1} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{1} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \text{Cl} \\ \mathbf{B}_{2} & =& - x_{1} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{1} \, \mathbf{a}_{3}& =& - \left(x_{1} \, a + z_{1} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{1} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \text{Cl} \\ \mathbf{B}_{3} & =& x_{2} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3}& =& \left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \text{K} \\ \mathbf{B}_{4} & =& - x_{2} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{2} \, \mathbf{a}_{3}& =& - \left(x_{2} \, a + z_{2} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{2} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \text{K} \\ \mathbf{B}_{5} & =& x_{3} \, \mathbf{a}_{1} + \frac14 \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3}& =& \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac14 \, b \, \mathbf{\hat{y}}+ z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \text{O I} \\ \mathbf{B}_{6} & =& - x_{3} \, \mathbf{a}_{1} + \frac34 \, \mathbf{a}_{2} - z_{3} \, \mathbf{a}_{3}& =& - \left(x_{3} \, a + z_{3} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \frac34 \, b \, \mathbf{\hat{y}}- z_{3} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(2e\right) & \text{O I} \\ \mathbf{B}_{7} & =& x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3}& =& \left(x_{4} \, a + z_{4} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ y_{4} \, b \, \mathbf{\hat{y}}+ z_{4} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4f\right) & \text{O II} \\ \mathbf{B}_{8} & =& - x_{4} \, \mathbf{a}_{1} + \left(\frac12 + y_{4}\right) \, \mathbf{a}_{2} - z_{4} \, \mathbf{a}_{3}& =& - \left(x_{4} \, a + z_{4} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \left(\frac12 + y_{4}\right) \, b \, \mathbf{\hat{y}}- z_{4} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4f\right) & \text{O II} \\ \mathbf{B}_{9} & =& - x_{4} \, \mathbf{a}_{1} - y_{4} \, \mathbf{a}_{2} - z_{4} \, \mathbf{a}_{3}& =& - \left(x_{4} \, a + z_{4} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}- y_{4} \, b \, \mathbf{\hat{y}}- z_{4} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4f\right) & \text{O II} \\ \mathbf{B}_{10} & =& x_{4} \, \mathbf{a}_{1} + \left(\frac12 - y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3}& =& \left(x_{4} \, a + z_{4} \, c \, \cos\beta\right) \, \mathbf{\hat{x}}+ \left(\frac12 - y_{4}\right) \, b \, \mathbf{\hat{y}}+ z_{4} \, c \, \sin\beta \, \mathbf{\hat{z}}& \left(4f\right) & \text{O II} \\ \end{array} \]