Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC3_mC10_5_b_a_ac

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

$C2$ (Ba,Ca)CO3 Structure : ABC3_mC10_5_b_a_ac

Picture of Structure; Click for Big Picture
Prototype : (Ba,Ca)CO3
AFLOW prototype label : ABC3_mC10_5_b_a_ac
Strukturbericht designation : None
Pearson symbol : mC10
Space group number : 5
Space group symbol : $C2$
AFLOW prototype command : aflow --proto=ABC3_mC10_5_b_a_ac
--params=
$a$,$b/a$,$c/a$,$\beta$,$y_{1}$,$y_{2}$,$y_{3}$,$x_{4}$,$y_{4}$,$z_{4}$



Base-centered Monoclinic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} \\ \mathbf{a}_3 & = & c \cos\beta \, \mathbf{\hat{x}} + c \sin\beta \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} & = & y_{1}b \, \mathbf{\hat{y}} & \left(2a\right) & \text{C} \\ \mathbf{B}_{2} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} & = & y_{2}b \, \mathbf{\hat{y}} & \left(2a\right) & \text{O I} \\ \mathbf{B}_{3} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2b\right) & \text{Ba} \\ \mathbf{B}_{4} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \text{O II} \\ \mathbf{B}_{5} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4c\right) & \text{O II} \\ \end{array} \]

References

  • D. Spahr, L. Bayarjargal, V. Vinograd, R. Luchitskaia, V. Milman, and B. Winkler, A new BaCa(CO3)2 polymorph, Acta Crystallogr. Sect. B Struct. Sci. 75, 291–300 (2019), doi:10.1107/S2052520619003238.

Geometry files


Prototype Generator

aflow --proto=ABC3_mC10_5_b_a_ac --params=

Species:

Running:

Output: