
AFLOW Prototype: AB8C8D_tI72_120_c_2i_2i_b
Prototype | : | BeH8O8S |
AFLOW prototype label | : | AB8C8D_tI72_120_c_2i_2i_b |
Strukturbericht designation | : | $H4_{3}$ |
Pearson symbol | : | tI72 |
Space group number | : | 120 |
Space group symbol | : | $I\bar{4}c2$ |
AFLOW prototype command | : | aflow --proto=AB8C8D_tI72_120_c_2i_2i_b --params=$a$,$c/a$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4b\right) & \text{S} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{S} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Be} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Be} \\ \mathbf{B}_{5} & = & \left(y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{6} & = & \left(-y_{3}+z_{3}\right) \, \mathbf{a}_{1} + \left(-x_{3}+z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{7} & = & \left(-x_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{8} & = & \left(x_{3}-z_{3}\right) \, \mathbf{a}_{1} + \left(-y_{3}-z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +y_{3} + z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3} + z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{3} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3} - z_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H I} \\ \mathbf{B}_{13} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{14} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{15} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{16} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{20} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{H II} \\ \mathbf{B}_{21} & = & \left(y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{22} & = & \left(-y_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{23} & = & \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{24} & = & \left(x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(-y_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{25} & = & \left(\frac{1}{2} - y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +y_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{27} & = & \left(\frac{1}{2} +x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{3} & = & y_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{5} - z_{5}\right) \, \mathbf{a}_{2} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{3} & = & -y_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O I} \\ \mathbf{B}_{29} & = & \left(y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{30} & = & \left(-y_{6}+z_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{31} & = & \left(-x_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{32} & = & \left(x_{6}-z_{6}\right) \, \mathbf{a}_{1} + \left(-y_{6}-z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{33} & = & \left(\frac{1}{2} - y_{6} + z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{6} + z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} +y_{6} + z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{6} + z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + y_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} +x_{6} - z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{6} - z_{6}\right) \, \mathbf{a}_{2} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{3} & = & y_{6}a \, \mathbf{\hat{x}} + x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - x_{6} - z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{6} - z_{6}\right) \, \mathbf{a}_{2} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{3} & = & -y_{6}a \, \mathbf{\hat{x}}-x_{6}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(16i\right) & \text{O II} \\ \end{array} \]