
AFLOW Prototype: AB5_mC48_12_2i_ac5i2j
Prototype | : | MgZn5 |
AFLOW prototype label | : | AB5_mC48_12_2i_ac5i2j |
Strukturbericht designation | : | $D2_{2}$ |
Pearson symbol | : | mC48 |
Space group number | : | 12 |
Space group symbol | : | $C2/m$ |
AFLOW prototype command | : | aflow --proto=AB5_mC48_12_2i_ac5i2j --params=$a$,$b/a$,$c/a$,$\beta$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$,$x_{7}$,$z_{7}$,$x_{8}$,$z_{8}$,$x_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$,$x_{11}$,$y_{11}$,$z_{11}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \text{Zn I} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c\cos\beta \, \mathbf{\hat{x}} + \frac{1}{2}c\sin\beta \, \mathbf{\hat{z}} & \left(2c\right) & \text{Zn II} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Mg I} \\ \mathbf{B}_{4} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Mg I} \\ \mathbf{B}_{5} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Mg II} \\ \mathbf{B}_{6} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Mg II} \\ \mathbf{B}_{7} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(x_{5}a+z_{5}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn III} \\ \mathbf{B}_{8} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}a-z_{5}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{5}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn III} \\ \mathbf{B}_{9} & = & x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(x_{6}a+z_{6}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn IV} \\ \mathbf{B}_{10} & = & -x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}a-z_{6}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{6}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn IV} \\ \mathbf{B}_{11} & = & x_{7} \, \mathbf{a}_{1} + x_{7} \, \mathbf{a}_{2} + z_{7} \, \mathbf{a}_{3} & = & \left(x_{7}a+z_{7}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn V} \\ \mathbf{B}_{12} & = & -x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2}-z_{7} \, \mathbf{a}_{3} & = & \left(-x_{7}a-z_{7}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{7}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn V} \\ \mathbf{B}_{13} & = & x_{8} \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \left(x_{8}a+z_{8}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn VI} \\ \mathbf{B}_{14} & = & -x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \left(-x_{8}a-z_{8}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{8}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn VI} \\ \mathbf{B}_{15} & = & x_{9} \, \mathbf{a}_{1} + x_{9} \, \mathbf{a}_{2} + z_{9} \, \mathbf{a}_{3} & = & \left(x_{9}a+z_{9}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn VII} \\ \mathbf{B}_{16} & = & -x_{9} \, \mathbf{a}_{1}-x_{9} \, \mathbf{a}_{2}-z_{9} \, \mathbf{a}_{3} & = & \left(-x_{9}a-z_{9}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{9}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Zn VII} \\ \mathbf{B}_{17} & = & \left(x_{10}-y_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}+y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn VIII} \\ \mathbf{B}_{18} & = & \left(-x_{10}-y_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn VIII} \\ \mathbf{B}_{19} & = & \left(-x_{10}+y_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}-y_{10}\right) \, \mathbf{a}_{2}-z_{10} \, \mathbf{a}_{3} & = & \left(-x_{10}a-z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}}-z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn VIII} \\ \mathbf{B}_{20} & = & \left(x_{10}+y_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}-y_{10}\right) \, \mathbf{a}_{2} + z_{10} \, \mathbf{a}_{3} & = & \left(x_{10}a+z_{10}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + z_{10}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn VIII} \\ \mathbf{B}_{21} & = & \left(x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}+y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn IX} \\ \mathbf{B}_{22} & = & \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}} + y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn IX} \\ \mathbf{B}_{23} & = & \left(-x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(-x_{11}-y_{11}\right) \, \mathbf{a}_{2}-z_{11} \, \mathbf{a}_{3} & = & \left(-x_{11}a-z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}}-z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn IX} \\ \mathbf{B}_{24} & = & \left(x_{11}+y_{11}\right) \, \mathbf{a}_{1} + \left(x_{11}-y_{11}\right) \, \mathbf{a}_{2} + z_{11} \, \mathbf{a}_{3} & = & \left(x_{11}a+z_{11}c\cos\beta\right) \, \mathbf{\hat{x}}-y_{11}b \, \mathbf{\hat{y}} + z_{11}c\sin\beta \, \mathbf{\hat{z}} & \left(8j\right) & \text{Zn IX} \\ \end{array} \]