
AFLOW Prototype: AB5C2_oC32_20_b_a2bc_c
Prototype | : | AlF5Tl2 |
AFLOW prototype label | : | AB5C2_oC32_20_b_a2bc_c |
Strukturbericht designation | : | $K3_{3}$ |
Pearson symbol | : | oC32 |
Space group number | : | 20 |
Space group symbol | : | $C222_{1}$ |
AFLOW prototype command | : | aflow --proto=AB5C2_oC32_20_b_a2bc_c --params=$a$,$b/a$,$c/a$,$x_{1}$,$y_{2}$,$y_{3}$,$y_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} & \left(4a\right) & \text{F I} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{F I} \\ \mathbf{B}_{3} & = & -y_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Al} \\ \mathbf{B}_{4} & = & y_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{2}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Al} \\ \mathbf{B}_{5} & = & -y_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{3}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{F II} \\ \mathbf{B}_{6} & = & y_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{3}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{F II} \\ \mathbf{B}_{7} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{F III} \\ \mathbf{B}_{8} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{F III} \\ \mathbf{B}_{9} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(8c\right) & \text{F IV} \\ \mathbf{B}_{10} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{5}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \text{F IV} \\ \mathbf{B}_{11} & = & \left(-x_{5}-y_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + y_{5}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{5}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \text{F IV} \\ \mathbf{B}_{12} & = & \left(x_{5}+y_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}}-y_{5}b \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(8c\right) & \text{F IV} \\ \mathbf{B}_{13} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}+y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8c\right) & \text{Tl} \\ \mathbf{B}_{14} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{6}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \text{Tl} \\ \mathbf{B}_{15} & = & \left(-x_{6}-y_{6}\right) \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & -x_{6}a \, \mathbf{\hat{x}} + y_{6}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8c\right) & \text{Tl} \\ \mathbf{B}_{16} & = & \left(x_{6}+y_{6}\right) \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & x_{6}a \, \mathbf{\hat{x}}-y_{6}b \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(8c\right) & \text{Tl} \\ \end{array} \]