
AFLOW Prototype: AB2C_mC16_12_g_2i_i
Prototype | : | FeSe2Tl |
AFLOW prototype label | : | AB2C_mC16_12_g_2i_i |
Strukturbericht designation | : | None |
Pearson symbol | : | mC16 |
Space group number | : | 12 |
Space group symbol | : | $C2/m$ |
AFLOW prototype command | : | aflow --proto=AB2C_mC16_12_g_2i_i --params=$a$,$b/a$,$c/a$,$\beta$,$y_{1}$,$x_{2}$,$z_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & -y_{1} \, \mathbf{a}_{1} + y_{1} \, \mathbf{a}_{2} & = & y_{1}b \, \mathbf{\hat{y}} & \left(4g\right) & \text{Fe} \\ \mathbf{B}_{2} & = & y_{1} \, \mathbf{a}_{1}-y_{1} \, \mathbf{a}_{2} & = & -y_{1}b \, \mathbf{\hat{y}} & \left(4g\right) & \text{Fe} \\ \mathbf{B}_{3} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \left(x_{2}a+z_{2}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Se I} \\ \mathbf{B}_{4} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \left(-x_{2}a-z_{2}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{2}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Se I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(x_{3}a+z_{3}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Se II} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(-x_{3}a-z_{3}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{3}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Se II} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(x_{4}a+z_{4}c\cos\beta\right) \, \mathbf{\hat{x}} + z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Tl} \\ \mathbf{B}_{8} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(-x_{4}a-z_{4}c\cos\beta\right) \, \mathbf{\hat{x}}-z_{4}c\sin\beta \, \mathbf{\hat{z}} & \left(4i\right) & \text{Tl} \\ \end{array} \]