
AFLOW Prototype: AB2C3D2_tP16_90_c_f_ce_e
Prototype | : | CCl2O3Pb2 |
AFLOW prototype label | : | AB2C3D2_tP16_90_c_f_ce_e |
Strukturbericht designation | : | $G7_{5}$ |
Pearson symbol | : | tP16 |
Space group number | : | 90 |
Space group symbol | : | $P42_{1}2$ |
AFLOW prototype command | : | aflow --proto=AB2C3D2_tP16_90_c_f_ce_e --params=$a$,$c/a$,$z_{1}$,$z_{2}$,$x_{3}$,$x_{4}$,$x_{5}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{1}c \, \mathbf{\hat{z}} & \left(2c\right) & \text{C} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{1} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{1}c \, \mathbf{\hat{z}} & \left(2c\right) & \text{C} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \text{O I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{2}c \, \mathbf{\hat{z}} & \left(2c\right) & \text{O I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} & = & x_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} & \left(4e\right) & \text{O II} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} & \left(4e\right) & \text{O II} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \text{O II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \text{O II} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} & = & x_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(4e\right) & \text{Pb} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & -x_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(4e\right) & \text{Pb} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \text{Pb} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} & \left(4e\right) & \text{Pb} \\ \mathbf{B}_{13} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \text{Cl} \\ \mathbf{B}_{14} & = & -x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \text{Cl} \\ \mathbf{B}_{15} & = & \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \text{Cl} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4f\right) & \text{Cl} \\ \end{array} \]