
AFLOW Prototype: A7B_hP24_187_ai2j2kn_j
Prototype | : | Cs7O |
AFLOW prototype label | : | A7B_hP24_187_ai2j2kn_j |
Strukturbericht designation | : | None |
Pearson symbol | : | hP24 |
Space group number | : | 187 |
Space group symbol | : | $P\bar{6}m2$ |
AFLOW prototype command | : | aflow --proto=A7B_hP24_187_ai2j2kn_j --params=$a$,$c/a$,$z_{2}$,$x_{3}$,$x_{4}$,$x_{5}$,$x_{6}$,$x_{7}$,$x_{8}$,$z_{8}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \text{Cs I} \\ \mathbf{B}_{2} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2i\right) & \text{Cs II} \\ \mathbf{B}_{3} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(2i\right) & \text{Cs II} \\ \mathbf{B}_{4} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -\sqrt{3}x_{3}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{Cs III} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + 2x_{3} \, \mathbf{a}_{2} & = & \frac{3}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{Cs III} \\ \mathbf{B}_{6} & = & -2x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -\frac{3}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{Cs III} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & -\sqrt{3}x_{4}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{Cs IV} \\ \mathbf{B}_{8} & = & x_{4} \, \mathbf{a}_{1} + 2x_{4} \, \mathbf{a}_{2} & = & \frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{Cs IV} \\ \mathbf{B}_{9} & = & -2x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} & = & -\frac{3}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{Cs IV} \\ \mathbf{B}_{10} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} & = & -\sqrt{3}x_{5}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{O} \\ \mathbf{B}_{11} & = & x_{5} \, \mathbf{a}_{1} + 2x_{5} \, \mathbf{a}_{2} & = & \frac{3}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{O} \\ \mathbf{B}_{12} & = & -2x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} & = & -\frac{3}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} & \left(3j\right) & \text{O} \\ \mathbf{B}_{13} & = & x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{6}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3k\right) & \text{Cs V} \\ \mathbf{B}_{14} & = & x_{6} \, \mathbf{a}_{1} + 2x_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3k\right) & \text{Cs V} \\ \mathbf{B}_{15} & = & -2x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3k\right) & \text{Cs V} \\ \mathbf{B}_{16} & = & x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{7}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3k\right) & \text{Cs VI} \\ \mathbf{B}_{17} & = & x_{7} \, \mathbf{a}_{1} + 2x_{7} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{7}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3k\right) & \text{Cs VI} \\ \mathbf{B}_{18} & = & -2x_{7} \, \mathbf{a}_{1}-x_{7} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{7}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{7}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3k\right) & \text{Cs VI} \\ \mathbf{B}_{19} & = & x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(6n\right) & \text{Cs VII} \\ \mathbf{B}_{20} & = & x_{8} \, \mathbf{a}_{1} + 2x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{8}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(6n\right) & \text{Cs VII} \\ \mathbf{B}_{21} & = & -2x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2} + z_{8} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{8}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}} + z_{8}c \, \mathbf{\hat{z}} & \left(6n\right) & \text{Cs VII} \\ \mathbf{B}_{22} & = & x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(6n\right) & \text{Cs VII} \\ \mathbf{B}_{23} & = & x_{8} \, \mathbf{a}_{1} + 2x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{8}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(6n\right) & \text{Cs VII} \\ \mathbf{B}_{24} & = & -2x_{8} \, \mathbf{a}_{1}-x_{8} \, \mathbf{a}_{2}-z_{8} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{8}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{8}a \, \mathbf{\hat{y}}-z_{8}c \, \mathbf{\hat{z}} & \left(6n\right) & \text{Cs VII} \\ \end{array} \]