Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B_cF32_225_bd_a

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Ca7Ge Structure: A7B_cF32_225_bd_a

Picture of Structure; Click for Big Picture
Prototype : Ca7Ge
AFLOW prototype label : A7B_cF32_225_bd_a
Strukturbericht designation : None
Pearson symbol : cF32
Space group number : 225
Space group symbol : $\text{Fm}\bar{3}\text{m}$
AFLOW prototype command : aflow --proto=A7B_cF32_225_bd_a
--params=
$a$


Other compounds with this structure

  • LiPt7, MoZn7

Face-centered Cubic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & \frac12 \, a \, \mathbf{\hat{y}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, a \, \mathbf{\hat{y}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = &0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = &0 \mathbf{\hat{x}} + 0 \mathbf{\hat{y}} + 0 \mathbf{\hat{z}} & \left(4a\right) & \text{Ge} \\ \mathbf{B}_{2} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(4b\right) & \text{Ca I} \\ \mathbf{B}_{3} & = &\frac12 \, \mathbf{a}_{1}& = &\frac14 \, a \, \mathbf{\hat{y}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \text{Ca II} \\ \mathbf{B}_{4} & = &\frac12 \, \mathbf{a}_{2}+ \frac12 \, \mathbf{a}_{3}& = &\frac12 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{y}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \text{Ca II} \\ \mathbf{B}_{5} & = &\frac12 \, \mathbf{a}_{2}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \text{Ca II} \\ \mathbf{B}_{6} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac12 \, a \, \mathbf{\hat{y}}+ \frac14 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \text{Ca II} \\ \mathbf{B}_{7} & = &\frac12 \, \mathbf{a}_{3}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{y}}& \left(24d\right) & \text{Ca II} \\ \mathbf{B}_{8} & = &\frac12 \, \mathbf{a}_{1}+ \frac12 \, \mathbf{a}_{2}& = &\frac14 \, a \, \mathbf{\hat{x}}+ \frac14 \, a \, \mathbf{\hat{y}}+ \frac12 \, a \, \mathbf{\hat{z}}& \left(24d\right) & \text{Ca II} \\ \end{array} \]

References

  • O. Helleis, H. Kandler, E. Leicht, W. Quiring, and E. Wölfel, Die Kristallstrukturen der intermetallischen Phasen Ca33Ge, Ca7Ge, Ca3Pb und Ca5Pb3, Z. Anorg. Allg. Chem. 320, 86–100 (1963), doi:10.1002/zaac.19633200113.

Found in

  • P. Villars, Material Phases Data System ((MPDS), CH–6354 Vitznau, Switzerland, 2014). Accessed through the Springer Materials site.

Geometry files


Prototype Generator

aflow --proto=A7B_cF32_225_bd_a --params=

Species:

Running:

Output: