
AFLOW Prototype: A7BC12_cI40_204_bc_a_g
Prototype | : | Mn7NaO12 |
AFLOW prototype label | : | A7BC12_cI40_204_bc_a_g |
Strukturbericht designation | : | None |
Pearson symbol | : | cI40 |
Space group number | : | 204 |
Space group symbol | : | $Im\bar{3}$ |
AFLOW prototype command | : | aflow --proto=A7BC12_cI40_204_bc_a_g --params=$a$,$y_{4}$,$z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(2a\right) & \text{Na} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(6b\right) & \text{Mn I} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(6b\right) & \text{Mn I} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{z}} & \left(6b\right) & \text{Mn I} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{Mn II} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{Mn II} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{Mn II} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & - \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{Mn II} \\ \mathbf{B}_{9} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{10} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{11} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{12} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{13} & = & y_{4} \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{14} & = & -y_{4} \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{15} & = & y_{4} \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{16} & = & -y_{4} \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{z}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{17} & = & z_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{18} & = & z_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{19} & = & -z_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \text{O} \\ \mathbf{B}_{20} & = & -z_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} & \left(24g\right) & \text{O} \\ \end{array} \]