
AFLOW Prototype: A5BC3_tI36_140_cl_b_ah
Prototype | : | Cl5CoCs3 |
AFLOW prototype label | : | A5BC3_tI36_140_cl_b_ah |
Strukturbericht designation | : | $K3_{1}$ |
Pearson symbol | : | tI36 |
Space group number | : | 140 |
Space group symbol | : | $I4/mcm$ |
AFLOW prototype command | : | aflow --proto=A5BC3_tI36_140_cl_b_ah --params=$a$,$c/a$,$x_{4}$,$x_{5}$,$z_{5}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} & = & \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Cs I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} & = & \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Cs I} \\ \mathbf{B}_{3} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Co} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Co} \\ \mathbf{B}_{5} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4c\right) & \text{Cl I} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4c\right) & \text{Cl I} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \text{Cs II} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} & \left(8h\right) & \text{Cs II} \\ \mathbf{B}_{9} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \text{Cs II} \\ \mathbf{B}_{10} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} & \left(8h\right) & \text{Cs II} \\ \mathbf{B}_{11} & = & \left(\frac{1}{2} +x_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{5} + z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{13} & = & \left(x_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{14} & = & \left(-x_{5}+z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} + z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{15} & = & \left(x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{5} - z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{x}} + x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{16} & = & \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{5} - z_{5}\right) \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{x}}-x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{17} & = & \left(\frac{1}{2} +x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +2x_{5}\right) \, \mathbf{a}_{3} & = & x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{5}\right)a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} - x_{5} - z_{5}\right) \, \mathbf{a}_{1} + \left(-x_{5}-z_{5}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - 2x_{5}\right) \, \mathbf{a}_{3} & = & -x_{5}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{5}\right)a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(16l\right) & \text{Cl II} \\ \end{array} \]