Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B7C_hR11_160_b_a2b_a

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Fe3PO7 Structure : A3B7C_hR11_160_b_a2b_a

Picture of Structure; Click for Big Picture
Prototype : Fe3O7P
AFLOW prototype label : A3B7C_hR11_160_b_a2b_a
Strukturbericht designation : None
Pearson symbol : hR11
Space group number : 160
Space group symbol : $R3m$
AFLOW prototype command : aflow --proto=A3B7C_hR11_160_b_a2b_a
--params=
$a$,$c/a$,$x_{1}$,$x_{2}$,$x_{3}$,$z_{3}$,$x_{4}$,$z_{4}$,$x_{5}$,$z_{5}$


  • Space group $R3m$ #160 allows an arbitary definition of the zero of the $z$–axis. Here we select $z_{1} = 0$, putting the phosphorus atom at the origin.

Rhombohedral primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & \frac{1}{\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & - \frac12 \, a \, \mathbf{\hat{x}} - \frac{1}{2\sqrt{3}} \, a \, \mathbf{\hat{y}} + \frac13 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}c \, \mathbf{\hat{z}} & \left(1a\right) & \text{O I} \\ \mathbf{B}_{2} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}c \, \mathbf{\hat{z}} & \left(1a\right) & \text{P} \\ \mathbf{B}_{3} & = & x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{Fe} \\ \mathbf{B}_{4} & = & z_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{3}-z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{Fe} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \frac{1}{\sqrt{3}}\left(-x_{3}+z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{3}+\frac{1}{3}z_{3}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{Fe} \\ \mathbf{B}_{6} & = & x_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{4}-z_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{4}-z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{4}+\frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{O II} \\ \mathbf{B}_{7} & = & z_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{4}+z_{4}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{4}-z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{4}+\frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{O II} \\ \mathbf{B}_{8} & = & x_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \frac{1}{\sqrt{3}}\left(-x_{4}+z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{4}+\frac{1}{3}z_{4}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{O II} \\ \mathbf{B}_{9} & = & x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}-z_{5}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{5}-z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{5}+\frac{1}{3}z_{5}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{O III} \\ \mathbf{B}_{10} & = & z_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(-x_{5}+z_{5}\right)a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}\left(x_{5}-z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{5}+\frac{1}{3}z_{5}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{O III} \\ \mathbf{B}_{11} & = & x_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2} + x_{5} \, \mathbf{a}_{3} & = & \frac{1}{\sqrt{3}}\left(-x_{5}+z_{5}\right)a \, \mathbf{\hat{y}} + \left(\frac{2}{3}x_{5}+\frac{1}{3}z_{5}\right)c \, \mathbf{\hat{z}} & \left(3b\right) & \text{O III} \\ \end{array} \]

References

  • A. Modaressi, A. Courtois, R. Gerardin, B. Malaman, and C. Gleitzer, Fe3PO7, Un cas de coordinence 5 du fer trivalent, etude structurale et magnetique, J. Solid State Chem. 47, 245–255 (1983), doi:10.1016/0022-4596(83)90016-6.

Found in

  • C. L. Sarkis, M. J. Tarne, J. R. Neilson, H. B. Cao, E. Coldren, M. P. Gelfand, and K. A. Ross, Partial antiferromagnetic helical order in single–crystal Fe3PO4O3, Phys. Rev. B 101, 184417 (2020), doi:10.1103/PhysRevB.101.184417.

Geometry files


Prototype Generator

aflow --proto=A3B7C_hR11_160_b_a2b_a --params=

Species:

Running:

Output: