
AFLOW Prototype: A3B2_cF80_227_f_e
Prototype | : | O3Sb2 |
AFLOW prototype label | : | A3B2_cF80_227_f_e |
Strukturbericht designation | : | $D6_{1}$ |
Pearson symbol | : | cF80 |
Space group number | : | 227 |
Space group symbol | : | $Fd\bar{3}m$ |
AFLOW prototype command | : | aflow --proto=A3B2_cF80_227_f_e --params=$a$,$x_{1}$,$x_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + x_{1}a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{2} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} - 3x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{1}\right)a \, \mathbf{\hat{y}} + x_{1}a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{3} & = & x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} - 3x_{1}\right) \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{1}\right)a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-x_{1}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} - 3x_{1}\right) \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} + x_{1} \, \mathbf{a}_{3} & = & x_{1}a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{1}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-x_{1}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{5} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \left(\frac{1}{2} +3x_{1}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{y}}-x_{1}a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{6} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}}-x_{1}a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{7} & = & -x_{1} \, \mathbf{a}_{1} + \left(\frac{1}{2} +3x_{1}\right) \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +3x_{1}\right) \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2}-x_{1} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{1}\right)a \, \mathbf{\hat{z}} & \left(32e\right) & \text{Sb} \\ \mathbf{B}_{9} & = & \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{10} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4}-x_{2}\right)a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{11} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{12} & = & \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \left(\frac{1}{4}-x_{2}\right)a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{13} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{14} & = & \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-x_{2}\right)a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{15} & = & \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{2}\right)a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{16} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{17} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +x_{2}\right)a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{18} & = & \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{19} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \mathbf{B}_{20} & = & \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(48f\right) & \text{O} \\ \end{array} \]