
AFLOW Prototype: A2B_tP12_92_b_a.TeO2
Prototype | : | O2Te |
AFLOW prototype label | : | A2B_tP12_92_b_a |
Strukturbericht designation | : | None |
Pearson symbol | : | tP12 |
Space group number | : | 92 |
Space group symbol | : | $P4_{1}2_{1}2$ |
AFLOW prototype command | : | aflow --proto=A2B_tP12_92_b_a --params=$a$,$c/a$,$x_{1}$,$x_{2}$,$y_{2}$,$z_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & x_{1} \, \mathbf{a}_{1} + x_{1} \, \mathbf{a}_{2} & = & x_{1}a \, \mathbf{\hat{x}} + x_{1}a \, \mathbf{\hat{y}} & \left(4a\right) & \text{Te} \\ \mathbf{B}_{2} & = & -x_{1} \, \mathbf{a}_{1}-x_{1} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{1}a \, \mathbf{\hat{x}}-x_{1}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Te} \\ \mathbf{B}_{3} & = & \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Te} \\ \mathbf{B}_{4} & = & \left(\frac{1}{2} +x_{1}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{1}\right) \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{1}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{1}\right)a \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4a\right) & \text{Te} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + y_{2} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + y_{2}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{6} & = & -x_{2} \, \mathbf{a}_{1}-y_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-y_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{7} & = & \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} +z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{2}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{4} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{2}\right) \, \mathbf{a}_{2} + \left(\frac{3}{4} - z_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{11} & = & y_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & y_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \mathbf{B}_{12} & = & -y_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{2}\right) \, \mathbf{a}_{3} & = & -y_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{2}\right)c \, \mathbf{\hat{z}} & \left(8b\right) & \text{O} \\ \end{array} \]