
AFLOW Prototype: A2B7C2_oF88_22_k_bdefghij_k
Prototype | : | Cd2O7Re2 |
AFLOW prototype label | : | A2B7C2_oF88_22_k_bdefghij_k |
Strukturbericht designation | : | None |
Pearson symbol | : | oF88 |
Space group number | : | 22 |
Space group symbol | : | $F222$ |
AFLOW prototype command | : | aflow --proto=A2B7C2_oF88_22_k_bdefghij_k --params=$a$,$b/a$,$c/a$,$x_{3}$,$y_{4}$,$z_{5}$,$z_{6}$,$y_{7}$,$x_{8}$,$x_{9}$,$y_{9}$,$z_{9}$,$x_{10}$,$y_{10}$,$z_{10}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{O I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}b \, \mathbf{\hat{y}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(4d\right) & \text{O II} \\ \mathbf{B}_{3} & = & -x_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} & \left(8e\right) & \text{O III} \\ \mathbf{B}_{4} & = & x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} & \left(8e\right) & \text{O III} \\ \mathbf{B}_{5} & = & y_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & y_{4}b \, \mathbf{\hat{y}} & \left(8f\right) & \text{O IV} \\ \mathbf{B}_{6} & = & -y_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -y_{4}b \, \mathbf{\hat{y}} & \left(8f\right) & \text{O IV} \\ \mathbf{B}_{7} & = & z_{5} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & z_{5}c \, \mathbf{\hat{z}} & \left(8g\right) & \text{O V} \\ \mathbf{B}_{8} & = & -z_{5} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -z_{5}c \, \mathbf{\hat{z}} & \left(8g\right) & \text{O V} \\ \mathbf{B}_{9} & = & z_{6} \, \mathbf{a}_{1} + z_{6} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(8h\right) & \text{O VI} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{6}\right)c \, \mathbf{\hat{z}} & \left(8h\right) & \text{O VI} \\ \mathbf{B}_{11} & = & y_{7} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{2} + y_{7} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + y_{7}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{O VII} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{1} + y_{7} \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{7}\right) \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{7}\right)b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8i\right) & \text{O VII} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{1} + x_{8} \, \mathbf{a}_{2} + x_{8} \, \mathbf{a}_{3} & = & x_{8}a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{O VIII} \\ \mathbf{B}_{14} & = & x_{8} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{8}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{8}\right)a \, \mathbf{\hat{x}} + \frac{1}{4}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{O VIII} \\ \mathbf{B}_{15} & = & \left(-x_{9}+y_{9}+z_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}-y_{9}+z_{9}\right) \, \mathbf{a}_{2} + \left(x_{9}+y_{9}-z_{9}\right) \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Cd} \\ \mathbf{B}_{16} & = & \left(x_{9}-y_{9}+z_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}+y_{9}+z_{9}\right) \, \mathbf{a}_{2} + \left(-x_{9}-y_{9}-z_{9}\right) \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}} + z_{9}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Cd} \\ \mathbf{B}_{17} & = & \left(x_{9}+y_{9}-z_{9}\right) \, \mathbf{a}_{1} + \left(-x_{9}-y_{9}-z_{9}\right) \, \mathbf{a}_{2} + \left(-x_{9}+y_{9}+z_{9}\right) \, \mathbf{a}_{3} & = & -x_{9}a \, \mathbf{\hat{x}} + y_{9}b \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Cd} \\ \mathbf{B}_{18} & = & \left(-x_{9}-y_{9}-z_{9}\right) \, \mathbf{a}_{1} + \left(x_{9}+y_{9}-z_{9}\right) \, \mathbf{a}_{2} + \left(x_{9}-y_{9}+z_{9}\right) \, \mathbf{a}_{3} & = & x_{9}a \, \mathbf{\hat{x}}-y_{9}b \, \mathbf{\hat{y}}-z_{9}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Cd} \\ \mathbf{B}_{19} & = & \left(-x_{10}+y_{10}+z_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}-y_{10}+z_{10}\right) \, \mathbf{a}_{2} + \left(x_{10}+y_{10}-z_{10}\right) \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Re} \\ \mathbf{B}_{20} & = & \left(x_{10}-y_{10}+z_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}+y_{10}+z_{10}\right) \, \mathbf{a}_{2} + \left(-x_{10}-y_{10}-z_{10}\right) \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}} + z_{10}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Re} \\ \mathbf{B}_{21} & = & \left(x_{10}+y_{10}-z_{10}\right) \, \mathbf{a}_{1} + \left(-x_{10}-y_{10}-z_{10}\right) \, \mathbf{a}_{2} + \left(-x_{10}+y_{10}+z_{10}\right) \, \mathbf{a}_{3} & = & -x_{10}a \, \mathbf{\hat{x}} + y_{10}b \, \mathbf{\hat{y}}-z_{10}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Re} \\ \mathbf{B}_{22} & = & \left(-x_{10}-y_{10}-z_{10}\right) \, \mathbf{a}_{1} + \left(x_{10}+y_{10}-z_{10}\right) \, \mathbf{a}_{2} + \left(x_{10}-y_{10}+z_{10}\right) \, \mathbf{a}_{3} & = & x_{10}a \, \mathbf{\hat{x}}-y_{10}b \, \mathbf{\hat{y}}-z_{10}c \, \mathbf{\hat{z}} & \left(16k\right) & \text{Re} \\ \end{array} \]