
AFLOW Prototype: A2B6CD6_cP60_205_c_d_a_d
Prototype | : | N2(NH3)6NiO6 |
AFLOW prototype label | : | A2B6CD6_cP60_205_c_d_a_d |
Strukturbericht designation | : | $H6_{4}$ |
Pearson symbol | : | cP60 |
Space group number | : | 205 |
Space group symbol | : | $Pa\bar{3}$ |
AFLOW prototype command | : | aflow --proto=A2B6CD6_cP60_205_c_d_a_d --params=$a$,$x_{2}$,$x_{3}$,$y_{3}$,$z_{3}$,$x_{4}$,$y_{4}$,$z_{4}$ |
where $v$ is somewhat less than 0.25,for the NH3 ($24d$) molecules, and $x_{4}=y_{4}=1/4$, $z_{4}=v'$, where $v'$
should not deviate far from 0.If we take these coordinates as written the space group becomes $Fm\overline{3}m$ #225 rather than Wyckoff's $Pa\overline{3}$ #205, so we adjusted $v$ and $v'$ slightly to put the system in his space group.
list of type descriptions,but no other volume of Strukturbericht refers to it at all. Accordingly, we will designate this structure by its original label.
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(4a\right) & \text{Ni} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \text{Ni} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(4a\right) & \text{Ni} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} & \left(4a\right) & \text{Ni} \\ \mathbf{B}_{5} & = & x_{2} \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{6} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{7} & = & -x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{8} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{9} & = & -x_{2} \, \mathbf{a}_{1}-x_{2} \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}}-x_{2}a \, \mathbf{\hat{y}}-x_{2}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{1} + x_{2} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{x}} + x_{2}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{11} & = & x_{2} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{12} & = & \left(\frac{1}{2} - x_{2}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{2}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{2}\right)a \, \mathbf{\hat{y}} + x_{2}a \, \mathbf{\hat{z}} & \left(8c\right) & \text{N} \\ \mathbf{B}_{13} & = & x_{3} \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{15} & = & -x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{16} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{17} & = & z_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{18} & = & \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{19} & = & \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{3}\right)a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{20} & = & -z_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{21} & = & y_{3} \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{22} & = & -y_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{23} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{3}\right)a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{24} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{25} & = & -x_{3} \, \mathbf{a}_{1}-y_{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}a \, \mathbf{\hat{y}}-z_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{26} & = & \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{1} + y_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{x}} + y_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{27} & = & x_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{28} & = & \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{y}} + z_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{29} & = & -z_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2}-y_{3} \, \mathbf{a}_{3} & = & -z_{3}a \, \mathbf{\hat{x}}-x_{3}a \, \mathbf{\hat{y}}-y_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{30} & = & \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + y_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{y}} + y_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{31} & = & \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{3}\right)a \, \mathbf{\hat{x}} + x_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{32} & = & z_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{3} & = & z_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{33} & = & -y_{3} \, \mathbf{a}_{1}-z_{3} \, \mathbf{a}_{2}-x_{3} \, \mathbf{a}_{3} & = & -y_{3}a \, \mathbf{\hat{x}}-z_{3}a \, \mathbf{\hat{y}}-x_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{34} & = & y_{3} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{3}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{3} & = & y_{3}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{3}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{35} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{3}\right) \, \mathbf{a}_{2} + x_{3} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{3}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{3}\right)a \, \mathbf{\hat{y}} + x_{3}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + z_{3} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{3}\right)a \, \mathbf{\hat{x}} + z_{3}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{3}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{NH$_{3}$} \\ \mathbf{B}_{37} & = & x_{4} \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{39} & = & -x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{40} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{41} & = & z_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{42} & = & \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{44} & = & -z_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{45} & = & y_{4} \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{46} & = & -y_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{47} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{48} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{49} & = & -x_{4} \, \mathbf{a}_{1}-y_{4} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{50} & = & \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{1} + y_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{51} & = & x_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{52} & = & \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{53} & = & -z_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2}-y_{4} \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{54} & = & \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + y_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{55} & = & \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{56} & = & z_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{57} & = & -y_{4} \, \mathbf{a}_{1}-z_{4} \, \mathbf{a}_{2}-x_{4} \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{58} & = & y_{4} \, \mathbf{a}_{1} + \left(\frac{1}{2} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2}-z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{59} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +z_{4}\right) \, \mathbf{a}_{2} + x_{4} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}-y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \mathbf{B}_{60} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + z_{4} \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2}-x_{4}\right)a \, \mathbf{\hat{z}} & \left(24d\right) & \text{O} \\ \end{array} \]