
AFLOW Prototype: A2B5_oI28_72_j_bfj
Prototype | : | Ga2Mg5 |
AFLOW prototype label | : | A2B5_oI28_72_j_bfj |
Strukturbericht designation | : | $D8_{g}$ |
Pearson symbol | : | oI28 |
Space group number | : | 72 |
Space group symbol | : | $Ibam$ |
AFLOW prototype command | : | aflow --proto=A2B5_oI28_72_j_bfj --params=$a$,$b/a$,$c/a$,$x_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Mg I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Mg I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{5} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{3}{4} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{6} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{7} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{11} & = & y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Mg III} \\ \mathbf{B}_{12} & = & -y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Mg III} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Mg III} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Mg III} \\ \end{array} \]