Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B5_oI28_72_j_bfj

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
  • D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Ga2Mg5 ($D8_{g}$) Structure : A2B5_oI28_72_j_bfj

Picture of Structure; Click for Big Picture
Prototype : Ga2Mg5
AFLOW prototype label : A2B5_oI28_72_j_bfj
Strukturbericht designation : $D8_{g}$
Pearson symbol : oI28
Space group number : 72
Space group symbol : $Ibam$
AFLOW prototype command : aflow --proto=A2B5_oI28_72_j_bfj
--params=
$a$,$b/a$,$c/a$,$x_{2}$,$x_{3}$,$y_{3}$,$x_{4}$,$y_{4}$


Other compounds with this structure

  • As2Cu5, Tl2Mg5, and Mn2Ge5

Body-centered Orthorhombic primitive vectors:

\[ \begin{array}{ccc} \mathbf{a}_1 & = & - \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_2 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} - \frac12 \, b \, \mathbf{\hat{y}} + \frac12 \, c \, \mathbf{\hat{z}} \\ \mathbf{a}_3 & = & ~ \frac12 \, a \, \mathbf{\hat{x}} + \frac12 \, b \, \mathbf{\hat{y}} - \frac12 \, c \, \mathbf{\hat{z}} \\ \end{array} \]

Basis vectors:

\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Mg I} \\ \mathbf{B}_{2} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}b \, \mathbf{\hat{y}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(4b\right) & \text{Mg I} \\ \mathbf{B}_{3} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{4} +x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{4} & = & \frac{1}{4} \, \mathbf{a}_{1} + \left(\frac{1}{4} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{1}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{5} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{3}{4} - x_{2}\right) \, \mathbf{a}_{2}-x_{2} \, \mathbf{a}_{3} & = & -x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{6} & = & \frac{3}{4} \, \mathbf{a}_{1} + \left(\frac{3}{4} +x_{2}\right) \, \mathbf{a}_{2} + x_{2} \, \mathbf{a}_{3} & = & x_{2}a \, \mathbf{\hat{x}} + \frac{3}{4}c \, \mathbf{\hat{z}} & \left(8f\right) & \text{Mg II} \\ \mathbf{B}_{7} & = & y_{3} \, \mathbf{a}_{1} + x_{3} \, \mathbf{a}_{2} + \left(x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{8} & = & -y_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} + \left(-x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{9} & = & \left(\frac{1}{2} +y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{3}\right) \, \mathbf{a}_{2} + \left(-x_{3}+y_{3}\right) \, \mathbf{a}_{3} & = & -x_{3}a \, \mathbf{\hat{x}} + y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{10} & = & \left(\frac{1}{2} - y_{3}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{3}\right) \, \mathbf{a}_{2} + \left(x_{3}-y_{3}\right) \, \mathbf{a}_{3} & = & x_{3}a \, \mathbf{\hat{x}}-y_{3}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Ga} \\ \mathbf{B}_{11} & = & y_{4} \, \mathbf{a}_{1} + x_{4} \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Mg III} \\ \mathbf{B}_{12} & = & -y_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} & \left(8j\right) & \text{Mg III} \\ \mathbf{B}_{13} & = & \left(\frac{1}{2} +y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Mg III} \\ \mathbf{B}_{14} & = & \left(\frac{1}{2} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}b \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(8j\right) & \text{Mg III} \\ \end{array} \]

References

  • K. Schubert, K. Frank, R. Gohle, A. Maldonado, H. G. Meissner, A. Raman, and W. Rossteutscher, Einige Strukturdaten metallischer Phasen (8), Naturwissenschaften 50, 41 (1963), doi:10.1007/BF00622812.

Found in

Geometry files


Prototype Generator

aflow --proto=A2B5_oI28_72_j_bfj --params=

Species:

Running:

Output: