
AFLOW Prototype: A2B3_hR10_167_c_e
Prototype | : | Al2O3 |
AFLOW prototype label | : | A2B3_hR10_167_c_e |
Strukturbericht designation | : | $D5_{1}$ |
Pearson symbol | : | hR10 |
Space group number | : | 167 |
Space group symbol | : | $\text{R}\bar{3}\text{c}$ |
AFLOW prototype command | : | aflow --proto=A2B3_hR10_167_c_e [--hex] --params=$a$,$c/a$,$x_{1}$,$x_{2}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = &x_{1} \, \mathbf{a}_{1}+ x_{1} \, \mathbf{a}_{2}+ x_{1} \, \mathbf{a}_{3}& =& x_{1} c \, \mathbf{\hat{z}}& \left(4c\right) & \text{Al} \\ \mathbf{B}_{2} & = &\left(\frac12 - x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 - x_{1}\right) \, \mathbf{a}_{3}& =& \left(\frac12 - x_{1}\right) c \, \mathbf{\hat{z}}& \left(4c\right) & \text{Al} \\ \mathbf{B}_{3} & = &- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}& = &- x_{1} c \, \mathbf{\hat{z}}& \left(4c\right) & \text{Al} \\ \mathbf{B}_{4} & = &\left(\frac12 + x_{1}\right) \, \mathbf{a}_{1}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{2}+ \left(\frac12 + x_{1}\right) \, \mathbf{a}_{3}& = &\left(\frac12 + x_{1}\right) c \, \mathbf{\hat{z}}& \left(4c\right) & \text{Al} \\ \mathbf{B}_{5} & = &x_{2} \, \mathbf{a}_{1}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{2}+ \frac14 \, \mathbf{a}_{3}& = &\frac18 \left(4 \, x_{2} - 1\right) \, a \, \mathbf{\hat{x}}+ \frac{\sqrt{3}}{8} \left(1 - 4 x_{2}\right) \, a \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(6e\right) & \text{O} \\ \mathbf{B}_{6} & = &\frac14 \, \mathbf{a}_{1}+ x_{2} \, \mathbf{a}_{2}+ \left(\frac12 - x_{2}\right) \, \mathbf{a}_{3}& = &\frac18 \left(4 x_{2} - 1\right) \, a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{8} \left(1 - 4 x_{2}\right) \, a \mathbf{\hat{y}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(6e\right) & \text{O} \\ \mathbf{B}_{7} & = &\left(\frac12 - x_{2}\right) \, \mathbf{a}_{1}+ \frac14 \, \mathbf{a}_{2}+ x_{2} \, \mathbf{a}_{3}& = &- \frac14 \left(4 x_{2} - 1\right) \, a \, \mathbf{\hat{x}}+ \frac14 \, c \, \mathbf{\hat{z}}& \left(6e\right) & \text{O} \\ \mathbf{B}_{8} & = &- x_{2} \, \mathbf{a}_{1}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{2}+ \frac34 \, \mathbf{a}_{3}& = &- \frac18 \left(4 x_{2} + 3\right) \, a \, \mathbf{\hat{x}}+ \frac1{8\sqrt3} \left(1 + 12 x_{2}\right) \, a \mathbf{\hat{y}}+ \frac5{12} \, c \, \mathbf{\hat{z}}& \left(6e\right) & \text{O} \\ \mathbf{B}_{9} & = &\frac34 \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+ \left(\frac12 + x_{2}\right) \, \mathbf{a}_{3}& = &- \frac18 \left(4 x_{2} - 1\right) \, a \, \mathbf{\hat{x}}- \frac1{8\sqrt3} \left(5 + 12 x_{2}\right) \, a \mathbf{\hat{y}}+ \frac5{12} \, c \, \mathbf{\hat{z}}& \left(6e\right) & \text{O} \\ \mathbf{B_{{10}}} & = &\left(\frac12 + x_{2}\right) \, \mathbf{a}_{1}+ \frac34 \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}& = &\frac14 \left(4 x_{2} + 1\right) \, a \, \mathbf{\hat{x}}+ \frac1{2\sqrt3} \, a \mathbf{\hat{y}}+ \frac5{12} \, c \, \mathbf{\hat{z}}& \left(6e\right) & \text{O} \\ \end{array} \]