
AFLOW Prototype: A2B3C12D3_cI160_230_a_c_h_d
Prototype | : | Co3Al2Si3O12 |
AFLOW prototype label | : | A2B3C12D3_cI160_230_a_c_h_d |
Strukturbericht designation | : | $S1_{4}$ |
Pearson symbol | : | cI160 |
Space group number | : | 230 |
Space group symbol | : | $Ia\bar{3}d$ |
AFLOW prototype command | : | aflow --proto=A2B3C12D3_cI160_230_a_c_h_d --params=$a$,$x_{4}$,$y_{4}$,$z_{4}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{2} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{y}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{3} & = & \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{4} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{z}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{5} & = & \frac{1}{2} \, \mathbf{a}_{1} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{6} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{7} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{2} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(16a\right) & \text{Al} \\ \mathbf{B}_{9} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{10} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & - \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{11} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{12} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{13} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{14} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}}- \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{15} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{16} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{5}{8}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{17} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{18} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{5}{8}a \, \mathbf{\hat{y}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{19} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{20} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{5}{8}a \, \mathbf{\hat{z}} & \left(24c\right) & \text{Co} \\ \mathbf{B}_{21} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{22} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{3}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{23} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{24} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{25} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{26} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{27} & = & \frac{5}{8} \, \mathbf{a}_{1} + \frac{3}{4} \, \mathbf{a}_{2} + \frac{3}{8} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{1}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{28} & = & \frac{7}{8} \, \mathbf{a}_{1} + \frac{1}{4} \, \mathbf{a}_{2} + \frac{1}{8} \, \mathbf{a}_{3} & = & \frac{3}{4}a \, \mathbf{\hat{x}} + \frac{3}{8}a \, \mathbf{\hat{y}} + \frac{1}{2}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{29} & = & \frac{3}{4} \, \mathbf{a}_{1} + \frac{3}{8} \, \mathbf{a}_{2} + \frac{5}{8} \, \mathbf{a}_{3} & = & \frac{1}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}} + \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{30} & = & \frac{1}{4} \, \mathbf{a}_{1} + \frac{1}{8} \, \mathbf{a}_{2} + \frac{7}{8} \, \mathbf{a}_{3} & = & \frac{3}{8}a \, \mathbf{\hat{x}} + \frac{1}{2}a \, \mathbf{\hat{y}}- \frac{1}{4}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{31} & = & \frac{1}{8} \, \mathbf{a}_{1} + \frac{7}{8} \, \mathbf{a}_{2} + \frac{1}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{3}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{32} & = & \frac{3}{8} \, \mathbf{a}_{1} + \frac{5}{8} \, \mathbf{a}_{2} + \frac{3}{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{4}a \, \mathbf{\hat{y}} + \frac{1}{8}a \, \mathbf{\hat{z}} & \left(24d\right) & \text{Si} \\ \mathbf{B}_{33} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{34} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{35} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{36} & = & \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{37} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{38} & = & \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{39} & = & \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{40} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - z_{4}\right)a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{41} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{42} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} - y_{4}\right)a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{43} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{44} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} - z_{4}\right)a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{45} & = & \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{46} & = & \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{47} & = & \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{48} & = & \left(x_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{49} & = & \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{50} & = & \left(y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{51} & = & \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{52} & = & \left(y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{53} & = & \left(\frac{1}{2} - x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{3}{4} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{54} & = & \left(x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{3}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{55} & = & \left(x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{3}{4} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{56} & = & \left(\frac{1}{2} - x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{57} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{58} & = & \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & x_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{y}}-z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{59} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{x}}-y_{4}a \, \mathbf{\hat{y}} + z_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{60} & = & \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + y_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{61} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{62} & = & \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -z_{4}a \, \mathbf{\hat{x}} + x_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{63} & = & \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & z_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{y}}-y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{64} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{x}}-x_{4}a \, \mathbf{\hat{y}} + y_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{65} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{66} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{2} +y_{4}\right)a \, \mathbf{\hat{x}}-z_{4}a \, \mathbf{\hat{y}} + x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{67} & = & \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & -y_{4}a \, \mathbf{\hat{x}} + z_{4}a \, \mathbf{\hat{y}} + \left(\frac{1}{2} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{68} & = & \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & y_{4}a \, \mathbf{\hat{x}} + \left(\frac{1}{2} +z_{4}\right)a \, \mathbf{\hat{y}}-x_{4}a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{69} & = & \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{3} & = & -a\left(y_{4}+\frac{1}{4}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{70} & = & \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{71} & = & \left(x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{y}}-a\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{72} & = & \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{x}}-a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{73} & = & \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{2} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{74} & = & \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{2} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}}-a\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{75} & = & \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{76} & = & \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{y}}-a\left(y_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{77} & = & \left(\frac{1}{2} +x_{4} - y_{4}\right) \, \mathbf{a}_{1} + \left(x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}-z_{4}\right) \, \mathbf{a}_{3} & = & -a\left(z_{4}+\frac{1}{4}\right) \, \mathbf{\hat{x}} + \left(\frac{1}{4} - y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{78} & = & \left(-x_{4}+y_{4}\right) \, \mathbf{a}_{1} + \left(-x_{4}-z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} - z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} - z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{y}}-a\left(x_{4}+\frac{1}{4}\right) \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{79} & = & \left(-x_{4}-y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} - x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(-y_{4}+z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{x}}-a\left(y_{4}+\frac{1}{4}\right) \, \mathbf{\hat{y}} + \left(\frac{1}{4} - x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \mathbf{B}_{80} & = & \left(\frac{1}{2} +x_{4} + y_{4}\right) \, \mathbf{a}_{1} + \left(\frac{1}{2} +x_{4} + z_{4}\right) \, \mathbf{a}_{2} + \left(\frac{1}{2} +y_{4} + z_{4}\right) \, \mathbf{a}_{3} & = & \left(\frac{1}{4} +z_{4}\right)a \, \mathbf{\hat{x}} + \left(\frac{1}{4} +y_{4}\right)a \, \mathbf{\hat{y}} + \left(\frac{1}{4} +x_{4}\right)a \, \mathbf{\hat{z}} & \left(96h\right) & \text{O} \\ \end{array} \]