
AFLOW Prototype: A2B12C6D_hP21_150_d_2g_ef_a
Prototype | : | Cl2H12O6Sr |
AFLOW prototype label | : | A2B12C6D_hP21_150_d_2g_ef_a |
Strukturbericht designation | : | None |
Pearson symbol | : | hP21 |
Space group number | : | 150 |
Space group symbol | : | $P321$ |
AFLOW prototype command | : | aflow --proto=A2B12C6D_hP21_150_d_2g_ef_a --params=$a$,$c/a$,$z_{2}$,$x_{3}$,$x_{4}$,$x_{5}$,$y_{5}$,$z_{5}$,$x_{6}$,$y_{6}$,$z_{6}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \text{Sr} \\ \mathbf{B}_{2} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{Cl} \\ \mathbf{B}_{3} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{Cl} \\ \mathbf{B}_{4} & = & x_{3} \, \mathbf{a}_{1} & = & \frac{1}{2}x_{3}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} & \left(3e\right) & \text{O I} \\ \mathbf{B}_{5} & = & x_{3} \, \mathbf{a}_{2} & = & \frac{1}{2}x_{3}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{3}a \, \mathbf{\hat{y}} & \left(3e\right) & \text{O I} \\ \mathbf{B}_{6} & = & -x_{3} \, \mathbf{a}_{1}-x_{3} \, \mathbf{a}_{2} & = & -x_{3}a \, \mathbf{\hat{x}} & \left(3e\right) & \text{O I} \\ \mathbf{B}_{7} & = & x_{4} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{4}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3f\right) & \text{O II} \\ \mathbf{B}_{8} & = & x_{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}x_{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{4}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3f\right) & \text{O II} \\ \mathbf{B}_{9} & = & -x_{4} \, \mathbf{a}_{1}-x_{4} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & -x_{4}a \, \mathbf{\hat{x}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(3f\right) & \text{O II} \\ \mathbf{B}_{10} & = & x_{5} \, \mathbf{a}_{1} + y_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{5}+y_{5}\right)a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H I} \\ \mathbf{B}_{11} & = & -y_{5} \, \mathbf{a}_{1} + \left(x_{5}-y_{5}\right) \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H I} \\ \mathbf{B}_{12} & = & \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H I} \\ \mathbf{B}_{13} & = & y_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{5}+y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{5}-y_{5}\right)a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H I} \\ \mathbf{B}_{14} & = & \left(x_{5}-y_{5}\right) \, \mathbf{a}_{1}-y_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{5}-y_{5}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H I} \\ \mathbf{B}_{15} & = & -x_{5} \, \mathbf{a}_{1} + \left(-x_{5}+y_{5}\right) \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \left(-x_{5}+\frac{1}{2}y_{5}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H I} \\ \mathbf{B}_{16} & = & x_{6} \, \mathbf{a}_{1} + y_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(-x_{6}+y_{6}\right)a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H II} \\ \mathbf{B}_{17} & = & -y_{6} \, \mathbf{a}_{1} + \left(x_{6}-y_{6}\right) \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{6}-y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H II} \\ \mathbf{B}_{18} & = & \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}+\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H II} \\ \mathbf{B}_{19} & = & y_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \frac{1}{2}\left(x_{6}+y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}\left(x_{6}-y_{6}\right)a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H II} \\ \mathbf{B}_{20} & = & \left(x_{6}-y_{6}\right) \, \mathbf{a}_{1}-y_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(\frac{1}{2}x_{6}-y_{6}\right)a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H II} \\ \mathbf{B}_{21} & = & -x_{6} \, \mathbf{a}_{1} + \left(-x_{6}+y_{6}\right) \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \left(-x_{6}+\frac{1}{2}y_{6}\right)a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}y_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(6g\right) & \text{H II} \\ \end{array} \]