
AFLOW Prototype: A16B2C_hP19_164_2d2i_d_b
Prototype | : | H16Li2Mg |
AFLOW prototype label | : | A16B2C_hP19_164_2d2i_d_b |
Strukturbericht designation | : | None |
Pearson symbol | : | hP19 |
Space group number | : | 164 |
Space group symbol | : | $P\bar{3}m1$ |
AFLOW prototype command | : | aflow --proto=A16B2C_hP19_164_2d2i_d_b --params=$a$,$c/a$,$z_{2}$,$z_{3}$,$z_{4}$,$x_{5}$,$z_{5}$,$x_{6}$,$z_{6}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}c \, \mathbf{\hat{z}} & \left(1b\right) & \text{Mg} \\ \mathbf{B}_{2} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{2}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{H I} \\ \mathbf{B}_{3} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{2}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{H I} \\ \mathbf{B}_{4} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{3}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{H II} \\ \mathbf{B}_{5} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{3} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{3}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{H II} \\ \mathbf{B}_{6} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + z_{4}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{Li} \\ \mathbf{B}_{7} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2}-z_{4} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}}-z_{4}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{Li} \\ \mathbf{B}_{8} & = & x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H III} \\ \mathbf{B}_{9} & = & x_{5} \, \mathbf{a}_{1} + 2x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H III} \\ \mathbf{B}_{10} & = & -2x_{5} \, \mathbf{a}_{1}-x_{5} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{5}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H III} \\ \mathbf{B}_{11} & = & -x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \sqrt{3}x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H III} \\ \mathbf{B}_{12} & = & 2x_{5} \, \mathbf{a}_{1} + x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{5}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H III} \\ \mathbf{B}_{13} & = & -x_{5} \, \mathbf{a}_{1}-2x_{5} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{5}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{5}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H III} \\ \mathbf{B}_{14} & = & x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -\sqrt{3}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H IV} \\ \mathbf{B}_{15} & = & x_{6} \, \mathbf{a}_{1} + 2x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H IV} \\ \mathbf{B}_{16} & = & -2x_{6} \, \mathbf{a}_{1}-x_{6} \, \mathbf{a}_{2} + z_{6} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}} + z_{6}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H IV} \\ \mathbf{B}_{17} & = & -x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \sqrt{3}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H IV} \\ \mathbf{B}_{18} & = & 2x_{6} \, \mathbf{a}_{1} + x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & \frac{3}{2}x_{6}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H IV} \\ \mathbf{B}_{19} & = & -x_{6} \, \mathbf{a}_{1}-2x_{6} \, \mathbf{a}_{2}-z_{6} \, \mathbf{a}_{3} & = & -\frac{3}{2}x_{6}a \, \mathbf{\hat{x}}-\frac{\sqrt{3}}{2}x_{6}a \, \mathbf{\hat{y}}-z_{6}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{H IV} \\ \end{array} \]