
AFLOW Prototype: A12B_hP13_191_cdei_a
Prototype | : | Be12Ti |
AFLOW prototype label | : | A12B_hP13_191_cdei_a |
Strukturbericht designation | : | $D2_{a}$ |
Pearson symbol | : | hP13 |
Space group number | : | 191 |
Space group symbol | : | $P6/mmm$ |
AFLOW prototype command | : | aflow --proto=A12B_hP13_191_cdei_a --params=$a$,$c/a$,$z_{4}$,$z_{5}$ |
Basis vectors:
\[ \begin{array}{ccccccc} & & \text{Lattice Coordinates} & & \text{Cartesian Coordinates} &\text{Wyckoff Position} & \text{Atom Type} \\ \mathbf{B}_{1} & = & 0 \, \mathbf{a}_{1} + 0 \, \mathbf{a}_{2} + 0 \, \mathbf{a}_{3} & = & 0 \, \mathbf{\hat{x}} + 0 \, \mathbf{\hat{y}} + 0 \, \mathbf{\hat{z}} & \left(1a\right) & \text{Ti} \\ \mathbf{B}_{2} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} & \left(2c\right) & \text{Be I} \\ \mathbf{B}_{3} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} & \left(2c\right) & \text{Be I} \\ \mathbf{B}_{4} & = & \frac{1}{3} \, \mathbf{a}_{1} + \frac{2}{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{Be II} \\ \mathbf{B}_{5} & = & \frac{2}{3} \, \mathbf{a}_{1} + \frac{1}{3} \, \mathbf{a}_{2} + \frac{1}{2} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}- \frac{1}{2\sqrt{3}}a \, \mathbf{\hat{y}} + \frac{1}{2}c \, \mathbf{\hat{z}} & \left(2d\right) & \text{Be II} \\ \mathbf{B}_{6} & = & z_{4} \, \mathbf{a}_{3} & = & z_{4}c \, \mathbf{\hat{z}} & \left(2e\right) & \text{Be III} \\ \mathbf{B}_{7} & = & -z_{4} \, \mathbf{a}_{3} & = & -z_{4}c \, \mathbf{\hat{z}} & \left(2e\right) & \text{Be III} \\ \mathbf{B}_{8} & = & \frac{1}{2} \, \mathbf{a}_{1} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{Be IV} \\ \mathbf{B}_{9} & = & \frac{1}{2} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}} + z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{Be IV} \\ \mathbf{B}_{10} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2} + z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}} + z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{Be IV} \\ \mathbf{B}_{11} & = & \frac{1}{2} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}} + \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{Be IV} \\ \mathbf{B}_{12} & = & \frac{1}{2} \, \mathbf{a}_{1}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{4}a \, \mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \, \mathbf{\hat{y}}-z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{Be IV} \\ \mathbf{B}_{13} & = & \frac{1}{2} \, \mathbf{a}_{1} + \frac{1}{2} \, \mathbf{a}_{2}-z_{5} \, \mathbf{a}_{3} & = & \frac{1}{2}a \, \mathbf{\hat{x}}-z_{5}c \, \mathbf{\hat{z}} & \left(6i\right) & \text{Be IV} \\ \end{array} \]