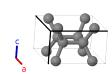
Hypothetical Tetrahedrally Bonded Carbon with 4-Member Rings Model Structure:

A_tI8_139_h-001


This structure originally had the label A_tI8_139_h. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/TE0L

https://aflow.org/p/A_tI8_139_h-001

Prototype C

AFLOW prototype label A_tI8_139_h-001

ICSD None
Pearson symbol tI8
Space group number 139

 ${\bf Space\ group\ symbol} \hspace{1.5cm} I4/mmm$

• This structure was proposed in (Schultz, 1999) to show that it was energetically possible to form four-member rings in amorphous sp³ carbon structures.

Body-centered Tetragonal primitive vectors

$$\mathbf{a_1} = -\frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} - \frac{1}{2}c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
${\bf B_1}$	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + 2x_1 \mathbf{a}_3$	=	$ax_1\hat{\mathbf{x}} + ax_1\hat{\mathbf{y}}$	(8h)	CI
$\mathbf{B_2}$	=	$-x_1\mathbf{a}_1 - x_1\mathbf{a}_2 - 2x_1\mathbf{a}_3$	=	$-ax_1\hat{\mathbf{x}} - ax_1\hat{\mathbf{y}}$	(8h)	CI
$\mathbf{B_3}$	=	$x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2$	=	$-ax_1\hat{\mathbf{x}} + ax_1\hat{\mathbf{y}}$	(8h)	CI
$\mathbf{B_4}$	=	$-x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2$	=	$ax_1 \hat{\mathbf{x}} - ax_1 \hat{\mathbf{y}}$	(8h)	CI

References

[1] P. A. Schultz, K. Leung, and E. B. Stechel, Small rings and amorphous tetrahedral carbon, Phys. Rev. B 59, 733–741 (1999), doi:10.1103/PhysRevB.59.733.