α-Sm (C19) Structure:
 A_hR3_166_ac-001

This structure originally had the label A_hR3_166_ac. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comput. Mater. Sci. 136, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

Sm

Prototype

AFLOW prototype label
Strukturbericht designation
ICSD
Pearson symbol
Space group number
Space group symbol $\quad R \overline{3} m$
AFLOW prototype command

Sm
A_hR3_166_ac-001
C19
76031
hR3
166
aflow --proto=A_hR3_166_ac-001
--params $=a, c / a, x_{2}$

Other compounds with this structure

Li, Gd

- This is also the proposed ground state of lithium as described in (Overhauser, 1984).
- Binary compounds with this structure are listed using CdCl_{2} as the prototype.
- This is a close-packed system, with stacking $A B C B C A C A B$, in contrast to the $A B A B$ stacking of the hexagonal close-packed structure and the ABCABC stacking of the face-centered cubic structure.
- Hexagonal settings for rhombohedral structures can be obtained with the option --hex.

Rhombohedral primitive vectors

$$
\begin{array}{lcc}
\mathbf{a}_{1} & = & \frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}} \\
\mathbf{a}_{\mathbf{2}} & = & \frac{1}{\sqrt{3}} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}} \\
\mathbf{a}_{\mathbf{3}} & = & -\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}}
\end{array}
$$

Basis vectors

Lattice				
coordinates		Cartesian coordinates	Wyckoff position	Atom type
0	$=$	0	$(1 \mathrm{a})$	Sm I
$\mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{2} \mathbf{a}_{3}$	$=$	$c x_{2} \hat{\mathbf{z}}$	$(2 \mathrm{c})$	Sm II
$x_{2} \mathbf{a}_{1}-x_{2} \mathbf{a}_{2}-x_{2} \mathbf{a}_{3}$	$=$	$-c x_{2} \hat{\mathbf{z}}$	$(2 \mathrm{c})$	Sm II

References

[1] A. H. Daane, R. E. Rundle, H. G. Smith, and F. H. Spedding, The crystal structure of samarium, Acta Cryst. 7, 532-535 (1954), doi 10.1107/S0365110X54001818.
[2] A. W. Overhauser, Crystal Structure of Lithium at 4.2 K, Phys. Rev. Lett. 53, 64-65 (1984), doi:10.1103/PhysRevLett.53.64.

