Rhombohedral Graphite Structure: A_hR2_166_c-002

This structure originally had the label A_hR2_166_c.C. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/NXUA

 $https://aflow.org/p/A_hR2_166_c-002$

Other compounds with this structure $\rm Bi,\, P,\, Sb$

- Graphite also comes in a hexagonal form, which may be either flat (A9) or buckled. When $x_1 = 1/6$ the graphite sheets are flat, however this does not produce a change in symmetry as it does in the hexagonal graphite structures.
- All of the elements listed in the "Other compounds" list have experimental entries in the ICSD.

• α -As (A7), rhombohedral graphite (A_hR2_166_c), and β -O have the same AFLOW prototype label, A_hR2_166_c. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files. Hexagonal settings of rhombohedral structures can be obtained with the option --hex.

Rhombohedral primitive vectors

$\mathbf{a_1} = \frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + \frac{1}{3}c\hat{\mathbf{z}}$	
$\mathbf{a_2} = \frac{1}{\sqrt{3}}a\mathbf{\hat{y}} + \frac{1}{3}c\mathbf{\hat{z}}$	
$\mathbf{a_3} = -\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + \frac{1}{3}c\hat{\mathbf{z}}$	

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + x_1 \mathbf{a}_3$	=	$cx_1 \hat{\mathbf{z}}$	(2c)	C I
B_2	=	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 - x_1 \mathbf{a}_3$	=	$-cx_1\mathbf{\hat{z}}$	(2c)	СI

References

[1] H. Lipson and A. R. Stokes, The structure of graphite, Proc. Roy. Soc. A 181, 101–105 (1942), doi:10.1098/rspa.1942.0063.

Found in

[1] J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).