α -Hg (A10) Structure: A_hR1_166_a-002

This structure originally had the label A_hR1_166_a.alpha-Hg. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/8ZQP

 $https://aflow.org/p/A_hR1_166_a-002$

Prototype Hg

AFLOW prototype label A_hR1_166_a-002

Strukturbericht designation A10

ICSD 174006

Pearson symbolhR1Space group number166Space group symbol $R\overline{3}m$

AFLOW prototype command aflow --proto=A_hR1_166_a-002

--params=a, c/a

• This rhombohedral structure becomes cubic at various values of c/a (or α) to wit,

c/a	α	Cubic Lattice		
$\sqrt{6}$	60°	Face-Centered Cubic		
$\sqrt{\frac{3}{2}}$	90°	Simple Cubic		
$\sqrt{\frac{3}{8}}$	109.47°	Body-Centered Cubic		

- β -Po (A_hR1_166_a and α -Hg (A_hR1_166_a) have the same AFLOW prototype label. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files. Experimentally, β -Po (A_i) has c/a near 1, or $\alpha > 90^{\circ}$, while α -Hg (A10) has c/a near 2, or $\alpha < 90^{\circ}$.
- Hexagonal settings of rhombohedral structures can be obtained with the option --hex.

Rhombohedral primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{\sqrt{3}}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = -\frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	0	=	0	(1a)	Hg I

References

[1] C. S. Barrett, The structure of mercury at low temperatures, Acta Cryst. 10, 58–60 (1957), doi:10.1107/S0365110X57000134.

Found in

[1] J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, New York, 1974).